The thickness of K_1,n,n and K_2,n,n
Ars Mathematica Contemporanea, Tome 15 (2018) no. 2, pp. 355-373.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The thickness of a graph G is the minimum number of planar subgraphs whose union is G. In this paper, we obtain the thickness of complete 3-partite graph K1, n, n, K2, n, n and complete 4-partite graph K1, 1, n, n.
DOI : 10.26493/1855-3974.1223.b26
Keywords: Thickness, complete 3-partite graph, complete 4-partite graph
@article{10_26493_1855_3974_1223_b26,
     author = {Xia Guo and Yan Yang},
     title = {The thickness of {K_1,n,n} and {K_2,n,n}},
     journal = {Ars Mathematica Contemporanea},
     pages = {355--373},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.1223.b26},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1223.b26/}
}
TY  - JOUR
AU  - Xia Guo
AU  - Yan Yang
TI  - The thickness of K_1,n,n and K_2,n,n
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 355
EP  - 373
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1223.b26/
DO  - 10.26493/1855-3974.1223.b26
LA  - en
ID  - 10_26493_1855_3974_1223_b26
ER  - 
%0 Journal Article
%A Xia Guo
%A Yan Yang
%T The thickness of K_1,n,n and K_2,n,n
%J Ars Mathematica Contemporanea
%D 2018
%P 355-373
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1223.b26/
%R 10.26493/1855-3974.1223.b26
%G en
%F 10_26493_1855_3974_1223_b26
Xia Guo; Yan Yang. The thickness of K_1,n,n and K_2,n,n. Ars Mathematica Contemporanea, Tome 15 (2018) no. 2, pp. 355-373. doi : 10.26493/1855-3974.1223.b26. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1223.b26/

Cité par Sources :