Maximum cuts of graphs with forbidden cycles
Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 147-160.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

For a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of G. For an integer m ≥ 1 and for a set ℋ of graphs, let f(m, ℋ) denote the minimum possible cardinality of f(G), as G ranges over all graphs on m edges that contain no member of ℋ as a subgraph. In particular, for a given graph H, we simply write f(m, H) for f(m, ℋ) when ℋ = {H}. Let r > 4 be a fixed even integer. Alon et al. (2003) conjectured that there exists a positive constant c(r) such that f(m, Cr − 1) ≥ m/2 + c(r)mr/(r + 1) for all m. In the present article, we show that f(m, Cr − 1) ≥ m/2 + c(r)(mrlog4m)1/(r + 2) for some positive constant c(r) and all m. For any fixed integer s ≥ 2, we also study the function f(m, ℋ) for ℋ = {K2, s, C5} and ℋ = {C4, C5, …, Cr − 1}, both of which improve the results of Alon et al.
DOI : 10.26493/1855-3974.1218.5ed
Keywords: ℋ-free graph, partition, maximum cut
@article{10_26493_1855_3974_1218_5ed,
     author = {Qinghou Zeng and Jianfeng Hou},
     title = {Maximum cuts of graphs with forbidden cycles},
     journal = {Ars Mathematica Contemporanea},
     pages = {147--160},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.1218.5ed},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1218.5ed/}
}
TY  - JOUR
AU  - Qinghou Zeng
AU  - Jianfeng Hou
TI  - Maximum cuts of graphs with forbidden cycles
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 147
EP  - 160
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1218.5ed/
DO  - 10.26493/1855-3974.1218.5ed
LA  - en
ID  - 10_26493_1855_3974_1218_5ed
ER  - 
%0 Journal Article
%A Qinghou Zeng
%A Jianfeng Hou
%T Maximum cuts of graphs with forbidden cycles
%J Ars Mathematica Contemporanea
%D 2018
%P 147-160
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1218.5ed/
%R 10.26493/1855-3974.1218.5ed
%G en
%F 10_26493_1855_3974_1218_5ed
Qinghou Zeng; Jianfeng Hou. Maximum cuts of graphs with forbidden cycles. Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 147-160. doi : 10.26493/1855-3974.1218.5ed. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1218.5ed/

Cité par Sources :