On pseudocyclic association schemes
Ars Mathematica Contemporanea, Tome 5 (2012) no. 1, pp. 1-25.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The notion of a pseudocyclic association scheme is generalized to the non-commutative case. It is proved that any pseudocyclic scheme the rank of which is much more than the valency is the scheme of a Frobenius group and is uniquely determined up to isomorphism by its intersection number array. An immediate corollary of this result is that any scheme of prime degree, valency k and rank at least k4 is schurian.
DOI : 10.26493/1855-3974.121.885
Keywords: pseudocyclic association schemes, Frobenius groups
@article{10_26493_1855_3974_121_885,
     author = {Mikhail Muzychuk and Ilia Ponomarenko},
     title = {On pseudocyclic association schemes},
     journal = {Ars Mathematica Contemporanea},
     pages = {1--25},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.26493/1855-3974.121.885},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.121.885/}
}
TY  - JOUR
AU  - Mikhail Muzychuk
AU  - Ilia Ponomarenko
TI  - On pseudocyclic association schemes
JO  - Ars Mathematica Contemporanea
PY  - 2012
SP  - 1
EP  - 25
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.121.885/
DO  - 10.26493/1855-3974.121.885
LA  - en
ID  - 10_26493_1855_3974_121_885
ER  - 
%0 Journal Article
%A Mikhail Muzychuk
%A Ilia Ponomarenko
%T On pseudocyclic association schemes
%J Ars Mathematica Contemporanea
%D 2012
%P 1-25
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.121.885/
%R 10.26493/1855-3974.121.885
%G en
%F 10_26493_1855_3974_121_885
Mikhail Muzychuk; Ilia Ponomarenko. On pseudocyclic association schemes. Ars Mathematica Contemporanea, Tome 5 (2012) no. 1, pp. 1-25. doi : 10.26493/1855-3974.121.885. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.121.885/

Cité par Sources :