Groups of Ree type in characteristic 3 acting on polytopes
Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 209-226.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Every Ree group R(q), with q ≠ 3 an odd power of 3, is the automorphism group of an abstract regular polytope, and any such polytope is necessarily a regular polyhedron (a map on a surface). However, an almost simple group G with R(q) G ≤ Aut(R(q)) is not a C-group and therefore not the automorphism group of an abstract regular polytope of any rank.
DOI : 10.26493/1855-3974.1193.0fa
Keywords: Abstract regular polytopes, string C-groups, small Ree groups, permutation groups
@article{10_26493_1855_3974_1193_0fa,
     author = {Dimitri Leemans and Egon Schulte and Hendrik Van Maldeghem},
     title = {Groups of {Ree} type in characteristic 3 acting on polytopes},
     journal = {Ars Mathematica Contemporanea},
     pages = {209--226},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.1193.0fa},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1193.0fa/}
}
TY  - JOUR
AU  - Dimitri Leemans
AU  - Egon Schulte
AU  - Hendrik Van Maldeghem
TI  - Groups of Ree type in characteristic 3 acting on polytopes
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 209
EP  - 226
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1193.0fa/
DO  - 10.26493/1855-3974.1193.0fa
LA  - en
ID  - 10_26493_1855_3974_1193_0fa
ER  - 
%0 Journal Article
%A Dimitri Leemans
%A Egon Schulte
%A Hendrik Van Maldeghem
%T Groups of Ree type in characteristic 3 acting on polytopes
%J Ars Mathematica Contemporanea
%D 2018
%P 209-226
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1193.0fa/
%R 10.26493/1855-3974.1193.0fa
%G en
%F 10_26493_1855_3974_1193_0fa
Dimitri Leemans; Egon Schulte; Hendrik Van Maldeghem. Groups of Ree type in characteristic 3 acting on polytopes. Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 209-226. doi : 10.26493/1855-3974.1193.0fa. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1193.0fa/

Cité par Sources :