Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website
@article{10_26493_1855_3974_1165_105, author = {Shenglin Zhou and Xiaoqin Zhan}, title = {Flag-transitive automorphism groups of 2-designs with \ensuremath{\lambda}\hspace{0.33em}\ensuremath{\geq}\hspace{0.33em}(r,\hspace{0.167em}\ensuremath{\lambda})^2 and an application to symmetric designs}, journal = {Ars Mathematica Contemporanea}, pages = {187--195}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2018}, doi = {10.26493/1855-3974.1165.105}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1165.105/} }
TY - JOUR AU - Shenglin Zhou AU - Xiaoqin Zhan TI - Flag-transitive automorphism groups of 2-designs with λ ≥ (r, λ)^2 and an application to symmetric designs JO - Ars Mathematica Contemporanea PY - 2018 SP - 187 EP - 195 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1165.105/ DO - 10.26493/1855-3974.1165.105 LA - en ID - 10_26493_1855_3974_1165_105 ER -
%0 Journal Article %A Shenglin Zhou %A Xiaoqin Zhan %T Flag-transitive automorphism groups of 2-designs with λ ≥ (r, λ)^2 and an application to symmetric designs %J Ars Mathematica Contemporanea %D 2018 %P 187-195 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1165.105/ %R 10.26493/1855-3974.1165.105 %G en %F 10_26493_1855_3974_1165_105
Shenglin Zhou; Xiaoqin Zhan. Flag-transitive automorphism groups of 2-designs with λ ≥ (r, λ)^2 and an application to symmetric designs. Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 187-195. doi : 10.26493/1855-3974.1165.105. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1165.105/
Cité par Sources :