On prime-valent symmetric graphs of square-free order
Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 53-65.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Symmetric graphs of valencies 3, 4 and 5 and square-free order have been classified in the literature. In this paper, we will present a complete classification of symmetric graphs of square-free order and any prime valency which admit a soluble arc-transitive group, and a complete classification of 7-valent symmetric graphs of square-free order.
DOI : 10.26493/1855-3974.1161.3b9
Keywords: Symmetric graph, normal quotient graph, automorphism group
@article{10_26493_1855_3974_1161_3b9,
     author = {Jiangmin Pan and Bo Ling and Suyun Ding},
     title = {On prime-valent symmetric graphs of square-free order},
     journal = {Ars Mathematica Contemporanea},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.1161.3b9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1161.3b9/}
}
TY  - JOUR
AU  - Jiangmin Pan
AU  - Bo Ling
AU  - Suyun Ding
TI  - On prime-valent symmetric graphs of square-free order
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 53
EP  - 65
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1161.3b9/
DO  - 10.26493/1855-3974.1161.3b9
LA  - en
ID  - 10_26493_1855_3974_1161_3b9
ER  - 
%0 Journal Article
%A Jiangmin Pan
%A Bo Ling
%A Suyun Ding
%T On prime-valent symmetric graphs of square-free order
%J Ars Mathematica Contemporanea
%D 2018
%P 53-65
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1161.3b9/
%R 10.26493/1855-3974.1161.3b9
%G en
%F 10_26493_1855_3974_1161_3b9
Jiangmin Pan; Bo Ling; Suyun Ding. On prime-valent symmetric graphs of square-free order. Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 53-65. doi : 10.26493/1855-3974.1161.3b9. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1161.3b9/

Cité par Sources :