Maximal core size in singular graphs
Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 217-229.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph G is singular of nullity η if the nullspace of its adjacency matrix G has dimension η. Such a graph contains η cores determined by a basis for the nullspace of G. These are induced subgraphs of singular configurations, the latter occurring as induced subgraphs of G. We show that there exists a set of η distinct vertices representing the singular configurations. We also explore how the nullity controls the size of the singular substructures and characterize those graphs of maximal nullity containing a substructure reaching maximal size.
DOI : 10.26493/1855-3974.115.891
Keywords: adjacency matrix, singular graphs, nullity, extremal singular graphs, singular congurations, core width
@article{10_26493_1855_3974_115_891,
     author = {Irene Sciriha},
     title = {Maximal core size in singular graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {217--229},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.26493/1855-3974.115.891},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.115.891/}
}
TY  - JOUR
AU  - Irene Sciriha
TI  - Maximal core size in singular graphs
JO  - Ars Mathematica Contemporanea
PY  - 2009
SP  - 217
EP  - 229
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.115.891/
DO  - 10.26493/1855-3974.115.891
LA  - en
ID  - 10_26493_1855_3974_115_891
ER  - 
%0 Journal Article
%A Irene Sciriha
%T Maximal core size in singular graphs
%J Ars Mathematica Contemporanea
%D 2009
%P 217-229
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.115.891/
%R 10.26493/1855-3974.115.891
%G en
%F 10_26493_1855_3974_115_891
Irene Sciriha. Maximal core size in singular graphs. Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 217-229. doi : 10.26493/1855-3974.115.891. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.115.891/

Cité par Sources :