Counting faces of graphical zonotopes
Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 227-234.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

It is a classical fact that the number of vertices of the graphical zonotope ZΓ  is equal to the number of acyclic orientations of a graph Γ . We show that the f-polynomial of ZΓ  is obtained as the principal specialization of the q-analog of the chromatic symmetric function of Γ .
DOI : 10.26493/1855-3974.1132.fae
Keywords: Graphical zonotope, f-vector, graphical matroid, symmetric function
@article{10_26493_1855_3974_1132_fae,
     author = {Vladimir Gruji\'c},
     title = {Counting faces of graphical zonotopes},
     journal = {Ars Mathematica Contemporanea},
     pages = {227--234},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.1132.fae},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1132.fae/}
}
TY  - JOUR
AU  - Vladimir Grujić
TI  - Counting faces of graphical zonotopes
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 227
EP  - 234
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1132.fae/
DO  - 10.26493/1855-3974.1132.fae
LA  - en
ID  - 10_26493_1855_3974_1132_fae
ER  - 
%0 Journal Article
%A Vladimir Grujić
%T Counting faces of graphical zonotopes
%J Ars Mathematica Contemporanea
%D 2017
%P 227-234
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1132.fae/
%R 10.26493/1855-3974.1132.fae
%G en
%F 10_26493_1855_3974_1132_fae
Vladimir Grujić. Counting faces of graphical zonotopes. Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 227-234. doi : 10.26493/1855-3974.1132.fae. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1132.fae/

Cité par Sources :