Enumeration of I-graphs: Burnside does it again
Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 241-262.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We give explicit and efficiently computable formulas for the number of isomorphism classes of I-graphs, connected I-graphs, bipartite connected I-graphs, generalized Petersen graphs, and bipartite generalized Petersen graphs. The tool that we use is the well-known Cauchy-Frobenius-Burnside lemma.
DOI : 10.26493/1855-3974.113.3dc
Keywords: I-graphs, generalized Petersen graphs, Cauchy-Frobenius-Burnside lemma, arithmetical functions
@article{10_26493_1855_3974_113_3dc,
     author = {Marko Petkov\v{s}ek and Helena Zakraj\v{s}ek},
     title = {Enumeration of {I-graphs:} {Burnside} does it again},
     journal = {Ars Mathematica Contemporanea},
     pages = {241--262},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.26493/1855-3974.113.3dc},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.113.3dc/}
}
TY  - JOUR
AU  - Marko Petkovšek
AU  - Helena Zakrajšek
TI  - Enumeration of I-graphs: Burnside does it again
JO  - Ars Mathematica Contemporanea
PY  - 2009
SP  - 241
EP  - 262
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.113.3dc/
DO  - 10.26493/1855-3974.113.3dc
LA  - en
ID  - 10_26493_1855_3974_113_3dc
ER  - 
%0 Journal Article
%A Marko Petkovšek
%A Helena Zakrajšek
%T Enumeration of I-graphs: Burnside does it again
%J Ars Mathematica Contemporanea
%D 2009
%P 241-262
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.113.3dc/
%R 10.26493/1855-3974.113.3dc
%G en
%F 10_26493_1855_3974_113_3dc
Marko Petkovšek; Helena Zakrajšek. Enumeration of I-graphs: Burnside does it again. Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 241-262. doi : 10.26493/1855-3974.113.3dc. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.113.3dc/

Cité par Sources :