The existence of square integer Heffter arrays
Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

An integer Heffter array H(m, n; s, t) is an m × n partially filled matrix with entries from the set { ± 1,  ± 2, …,  ± ms} such that i) each row contains s filled cells and each column contains t filled cells, ii) every row and column sums to 0 (in Z), and iii) no two entries agree in absolute value. Heffter arrays are useful for embedding the complete graph K2ms + 1 on an orientable surface in such a way that each edge lies between a face bounded by an s-cycle and a face bounded by a t-cycle. In 2015, Archdeacon, Dinitz, Donovan and Yazici constructed square (i.e. m = n) integer Heffter arrays for many congruence classes. In this paper we construct square integer Heffter arrays for all the cases not found in that paper, completely solving the existence problem for square integer Heffter arrays.
DOI : 10.26493/1855-3974.1121.fbf
Keywords: Heffter array, biembedding
@article{10_26493_1855_3974_1121_fbf,
     author = {Jeffrey H. Dinitz and Ian M. Wanless},
     title = {The existence of square integer {Heffter} arrays},
     journal = {Ars Mathematica Contemporanea},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.1121.fbf},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1121.fbf/}
}
TY  - JOUR
AU  - Jeffrey H. Dinitz
AU  - Ian M. Wanless
TI  - The existence of square integer Heffter arrays
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 81
EP  - 93
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1121.fbf/
DO  - 10.26493/1855-3974.1121.fbf
LA  - en
ID  - 10_26493_1855_3974_1121_fbf
ER  - 
%0 Journal Article
%A Jeffrey H. Dinitz
%A Ian M. Wanless
%T The existence of square integer Heffter arrays
%J Ars Mathematica Contemporanea
%D 2017
%P 81-93
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1121.fbf/
%R 10.26493/1855-3974.1121.fbf
%G en
%F 10_26493_1855_3974_1121_fbf
Jeffrey H. Dinitz; Ian M. Wanless. The existence of square integer Heffter arrays. Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 81-93. doi : 10.26493/1855-3974.1121.fbf. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1121.fbf/

Cité par Sources :