A note on acyclic number of planar graphs
Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 317-322.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The acyclic number a(G) of a graph G is the maximum order of an induced forest in G. The purpose of this short paper is to propose a conjecture that a(G) ≥ (1 − 3/(2g))n holds for every planar graph G of girth g and order n, which captures three known conjectures on the topic. In support of this conjecture, we prove a weaker result that a(G) ≥ (1 − 3/g)n holds. In addition, we give a construction showing that the constant 3/2 from the conjecture cannot be decreased.
DOI : 10.26493/1855-3974.1118.143
Keywords: Induced forest, acyclic number, planar graph, girth
@article{10_26493_1855_3974_1118_143,
     author = {Mirko Petru\v{s}evski and Riste \v{S}krekovski},
     title = {A note on acyclic number of planar graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {317--322},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     doi = {10.26493/1855-3974.1118.143},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1118.143/}
}
TY  - JOUR
AU  - Mirko Petruševski
AU  - Riste Škrekovski
TI  - A note on acyclic number of planar graphs
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 317
EP  - 322
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1118.143/
DO  - 10.26493/1855-3974.1118.143
LA  - en
ID  - 10_26493_1855_3974_1118_143
ER  - 
%0 Journal Article
%A Mirko Petruševski
%A Riste Škrekovski
%T A note on acyclic number of planar graphs
%J Ars Mathematica Contemporanea
%D 2017
%P 317-322
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1118.143/
%R 10.26493/1855-3974.1118.143
%G en
%F 10_26493_1855_3974_1118_143
Mirko Petruševski; Riste Škrekovski. A note on acyclic number of planar graphs. Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 317-322. doi : 10.26493/1855-3974.1118.143. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1118.143/

Cité par Sources :