Spectrum, distance spectrum, and Wiener index of wreath products of complete graphs
Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 207-225.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We describe the adjacency matrix and the distance matrix of the wreath product of two complete graphs, and we give an explicit computation of their spectra. As an application, we deduce the spectrum of the transition matrix of the Lamplighter random walk over a complete base graph, with a complete color graph. Finally, an explicit computation of the Wiener index is given.
DOI : 10.26493/1855-3974.1117.7ba
Keywords: Wreath product of complete graphs, adjacency matrix, distance matrix, spectrum, distance spectrum, Wiener index
@article{10_26493_1855_3974_1117_7ba,
     author = {Alfredo Donno},
     title = {Spectrum, distance spectrum, and {Wiener} index of wreath products of complete graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {207--225},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     doi = {10.26493/1855-3974.1117.7ba},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1117.7ba/}
}
TY  - JOUR
AU  - Alfredo Donno
TI  - Spectrum, distance spectrum, and Wiener index of wreath products of complete graphs
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 207
EP  - 225
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1117.7ba/
DO  - 10.26493/1855-3974.1117.7ba
LA  - en
ID  - 10_26493_1855_3974_1117_7ba
ER  - 
%0 Journal Article
%A Alfredo Donno
%T Spectrum, distance spectrum, and Wiener index of wreath products of complete graphs
%J Ars Mathematica Contemporanea
%D 2017
%P 207-225
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1117.7ba/
%R 10.26493/1855-3974.1117.7ba
%G en
%F 10_26493_1855_3974_1117_7ba
Alfredo Donno. Spectrum, distance spectrum, and Wiener index of wreath products of complete graphs. Ars Mathematica Contemporanea, Tome 13 (2017) no. 1, pp. 207-225. doi : 10.26493/1855-3974.1117.7ba. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1117.7ba/

Cité par Sources :