Genus distribution of graph amalgamations: Pasting when one root has arbitrary degree
Ars Mathematica Contemporanea, Tome 3 (2010) no. 2, pp. 121-138.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

This paper concerns counting the imbeddings of a graph in a surface. In the first installment of our current work, we showed how to calculate the genus distribution of an iterated amalgamation of copies of a graph whose genus distribution is already known and is further analyzed into a partitioned genus distribution (which is defined for a double-rooted graph). Our methods were restricted there to the case with two 2-valent roots. In this sequel we substantially extend the method in order to allow one of the two roots to have arbitrarily high valence.
DOI : 10.26493/1855-3974.111.e89
Keywords: Graph, genus distribution, vertex-amalgamation
@article{10_26493_1855_3974_111_e89,
     author = {Imran F. Khan and Mehvish I. Poshni and Jonathan L. Gross},
     title = {Genus distribution of graph amalgamations: {Pasting} when one root has arbitrary degree},
     journal = {Ars Mathematica Contemporanea},
     pages = {121--138},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     doi = {10.26493/1855-3974.111.e89},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.111.e89/}
}
TY  - JOUR
AU  - Imran F. Khan
AU  - Mehvish I. Poshni
AU  - Jonathan L. Gross
TI  - Genus distribution of graph amalgamations: Pasting when one root has arbitrary degree
JO  - Ars Mathematica Contemporanea
PY  - 2010
SP  - 121
EP  - 138
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.111.e89/
DO  - 10.26493/1855-3974.111.e89
LA  - en
ID  - 10_26493_1855_3974_111_e89
ER  - 
%0 Journal Article
%A Imran F. Khan
%A Mehvish I. Poshni
%A Jonathan L. Gross
%T Genus distribution of graph amalgamations: Pasting when one root has arbitrary degree
%J Ars Mathematica Contemporanea
%D 2010
%P 121-138
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.111.e89/
%R 10.26493/1855-3974.111.e89
%G en
%F 10_26493_1855_3974_111_e89
Imran F. Khan; Mehvish I. Poshni; Jonathan L. Gross. Genus distribution of graph amalgamations: Pasting when one root has arbitrary degree. Ars Mathematica Contemporanea, Tome 3 (2010) no. 2, pp. 121-138. doi : 10.26493/1855-3974.111.e89. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.111.e89/

Cité par Sources :