On the number of additive permutations and Skolem-type sequences
Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 415-432.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Cavenagh and Wanless recently proved that, for sufficiently large odd n, the number of transversals in the Latin square formed from the addition table for integers modulo n is greater than (3.246)n. We adapt their proof to show that for sufficiently large t the number of additive permutations on [−t, t] is greater than (3.246)2t + 1 and we go on to derive some much improved lower bounds on the numbers of Skolem-type sequences. For example, it is shown that for sufficiently large t ≡ 0 or 3 (mod 4), the number of split Skolem sequences of order n = 7t + 3 is greater than (3.246)6t + 3. This compares with the previous best bound of 2⌊n/3⌋.
DOI : 10.26493/1855-3974.1098.ca0
Keywords: Additive permutation, Skolem sequence, transversal
@article{10_26493_1855_3974_1098_ca0,
     author = {Diane M. Donovan and Michael J. Grannell},
     title = {On the number of additive permutations and {Skolem-type} sequences},
     journal = {Ars Mathematica Contemporanea},
     pages = {415--432},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.1098.ca0},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1098.ca0/}
}
TY  - JOUR
AU  - Diane M. Donovan
AU  - Michael J. Grannell
TI  - On the number of additive permutations and Skolem-type sequences
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 415
EP  - 432
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1098.ca0/
DO  - 10.26493/1855-3974.1098.ca0
LA  - en
ID  - 10_26493_1855_3974_1098_ca0
ER  - 
%0 Journal Article
%A Diane M. Donovan
%A Michael J. Grannell
%T On the number of additive permutations and Skolem-type sequences
%J Ars Mathematica Contemporanea
%D 2018
%P 415-432
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1098.ca0/
%R 10.26493/1855-3974.1098.ca0
%G en
%F 10_26493_1855_3974_1098_ca0
Diane M. Donovan; Michael J. Grannell. On the number of additive permutations and Skolem-type sequences. Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 415-432. doi : 10.26493/1855-3974.1098.ca0. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1098.ca0/

Cité par Sources :