More on the structure of plane graphs with prescribed degrees of vertices, faces, edges and dual edges
Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 355-366.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We study the families of plane graphs determined by lower bounds δ, ρ, w, w *  on their vertex degrees, face sizes, edge weights and dual edge weights, respectively. Continuing the previous research of such families comprised of polyhedral graphs, we determine the quadruples (2, ρ, w, w * ) for which the associated family is non-empty. In addition, we determine all quadruples which yield extremal families (in the sense that the increase of any value of a quadruple results in an empty family).
DOI : 10.26493/1855-3974.1092.e83
Keywords: Plane graph, girth, edge weight, dual edge weight
@article{10_26493_1855_3974_1092_e83,
     author = {Peter Hud\'ak and M\'aria Macekov\'a and Tom\'a\v{s} Madaras and Pavol \v{S}iroczki},
     title = {More on the structure of plane graphs with prescribed degrees of vertices, faces, edges and dual edges},
     journal = {Ars Mathematica Contemporanea},
     pages = {355--366},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     doi = {10.26493/1855-3974.1092.e83},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1092.e83/}
}
TY  - JOUR
AU  - Peter Hudák
AU  - Mária Maceková
AU  - Tomáš Madaras
AU  - Pavol Široczki
TI  - More on the structure of plane graphs with prescribed degrees of vertices, faces, edges and dual edges
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 355
EP  - 366
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1092.e83/
DO  - 10.26493/1855-3974.1092.e83
LA  - en
ID  - 10_26493_1855_3974_1092_e83
ER  - 
%0 Journal Article
%A Peter Hudák
%A Mária Maceková
%A Tomáš Madaras
%A Pavol Široczki
%T More on the structure of plane graphs with prescribed degrees of vertices, faces, edges and dual edges
%J Ars Mathematica Contemporanea
%D 2017
%P 355-366
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1092.e83/
%R 10.26493/1855-3974.1092.e83
%G en
%F 10_26493_1855_3974_1092_e83
Peter Hudák; Mária Maceková; Tomáš Madaras; Pavol Široczki. More on the structure of plane graphs with prescribed degrees of vertices, faces, edges and dual edges. Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 355-366. doi : 10.26493/1855-3974.1092.e83. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1092.e83/

Cité par Sources :