Strongly regular edge-transitive graphs
Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 137-155.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this paper, we examine the structure of vertex- and edge-transitive strongly regular graphs, using normal quotient reduction. We show that the irreducible graphs in this family have quasiprimitive automorphism groups, and prove (using the Classification of Finite Simple Groups) that no graph in this family has a holomorphic simple automorphism group. We also find some constraints on the parameters of the graphs in this family that reduce to complete graphs.
DOI : 10.26493/1855-3974.109.97f
Keywords: strongly regular graphs, vertex-transitive graphs, edge- transitive graphs, normal quotient reduction, automorphism group
@article{10_26493_1855_3974_109_97f,
     author = {Joy Morris and Cheryl E. Praeger and Pablo Spiga},
     title = {Strongly regular edge-transitive graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.26493/1855-3974.109.97f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.109.97f/}
}
TY  - JOUR
AU  - Joy Morris
AU  - Cheryl E. Praeger
AU  - Pablo Spiga
TI  - Strongly regular edge-transitive graphs
JO  - Ars Mathematica Contemporanea
PY  - 2009
SP  - 137
EP  - 155
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.109.97f/
DO  - 10.26493/1855-3974.109.97f
LA  - en
ID  - 10_26493_1855_3974_109_97f
ER  - 
%0 Journal Article
%A Joy Morris
%A Cheryl E. Praeger
%A Pablo Spiga
%T Strongly regular edge-transitive graphs
%J Ars Mathematica Contemporanea
%D 2009
%P 137-155
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.109.97f/
%R 10.26493/1855-3974.109.97f
%G en
%F 10_26493_1855_3974_109_97f
Joy Morris; Cheryl E. Praeger; Pablo Spiga. Strongly regular edge-transitive graphs. Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 137-155. doi : 10.26493/1855-3974.109.97f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.109.97f/

Cité par Sources :