On the rank two geometries of the groups PSL(2, q): part I
Ars Mathematica Contemporanea, Tome 3 (2010) no. 2, pp. 177-192.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We determine all firm and residually connected rank 2 geometries on which PSL(2,q) acts flag-transitively, residually weakly primitively and locally two-transitively, where one of the maximal parabolic subgroups is isomorphic to Eq : (q − 1)/(2, q − 1), where Eq denotes an elementary abelian group of order q, or D2n(q), the dihedral group of order 2n(q) where n(q) := (q ± 1)/gcd(2, q − 1) for some prime-power q.
DOI : 10.26493/1855-3974.107.2e3
Keywords: Projective special linear groups, coset geometries.
@article{10_26493_1855_3974_107_2e3,
     author = {Julie De Saedeleer and Dimitri Leemans},
     title = {On the rank two geometries of the  groups {PSL(2,} q): part {I}},
     journal = {Ars Mathematica Contemporanea},
     pages = {177--192},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     doi = {10.26493/1855-3974.107.2e3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.107.2e3/}
}
TY  - JOUR
AU  - Julie De Saedeleer
AU  - Dimitri Leemans
TI  - On the rank two geometries of the  groups PSL(2, q): part I
JO  - Ars Mathematica Contemporanea
PY  - 2010
SP  - 177
EP  - 192
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.107.2e3/
DO  - 10.26493/1855-3974.107.2e3
LA  - en
ID  - 10_26493_1855_3974_107_2e3
ER  - 
%0 Journal Article
%A Julie De Saedeleer
%A Dimitri Leemans
%T On the rank two geometries of the  groups PSL(2, q): part I
%J Ars Mathematica Contemporanea
%D 2010
%P 177-192
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.107.2e3/
%R 10.26493/1855-3974.107.2e3
%G en
%F 10_26493_1855_3974_107_2e3
Julie De Saedeleer; Dimitri Leemans. On the rank two geometries of the  groups PSL(2, q): part I. Ars Mathematica Contemporanea, Tome 3 (2010) no. 2, pp. 177-192. doi : 10.26493/1855-3974.107.2e3. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.107.2e3/

Cité par Sources :