On zero sum-partition of Abelian groups into three sets and group distance magic labeling
Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 417-425.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We say that a finite Abelian group Γ  has the constant-sum-partition property into t sets (CSP(t)-property) if for every partition n = r1 + r2 + … + rt of n, with ri ≥ 2 for 2 ≤ i ≤ t, there is a partition of Γ  into pairwise disjoint subsets A1, A2, …, At, such that ∣Ai∣ = ri and for some ν ∈ Γ , ∑ a ∈ Aia = ν for 1 ≤ i ≤ t. For ν = g0 (where g0 is the identity element of Γ ) we say that Γ  has zero-sum-partition property into t sets (ZSP(t)-property).A Γ -distance magic labeling of a graph G = (V, E) with ∣V∣ = n is a bijection ℓ from V to an Abelian group Γ  of order n such that the weight w(x) = ∑ y ∈ N(x)ℓ(y) of every vertex x ∈ V is equal to the same element μ ∈ Γ , called the magic constant. A graph G is called a group distance magic graph if there exists a Γ -distance magic labeling for every Abelian group Γ  of order ∣V(G)∣.In this paper we study the CSP(3)-property of Γ , and apply the results to the study of group distance magic complete tripartite graphs.
DOI : 10.26493/1855-3974.1054.fcd
Keywords: Abelian group, constant sum partition, group distance magic labeling
@article{10_26493_1855_3974_1054_fcd,
     author = {Sylwia Cichacz},
     title = {On zero sum-partition of {Abelian} groups into three sets and group distance magic labeling},
     journal = {Ars Mathematica Contemporanea},
     pages = {417--425},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     doi = {10.26493/1855-3974.1054.fcd},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1054.fcd/}
}
TY  - JOUR
AU  - Sylwia Cichacz
TI  - On zero sum-partition of Abelian groups into three sets and group distance magic labeling
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 417
EP  - 425
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1054.fcd/
DO  - 10.26493/1855-3974.1054.fcd
LA  - en
ID  - 10_26493_1855_3974_1054_fcd
ER  - 
%0 Journal Article
%A Sylwia Cichacz
%T On zero sum-partition of Abelian groups into three sets and group distance magic labeling
%J Ars Mathematica Contemporanea
%D 2017
%P 417-425
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1054.fcd/
%R 10.26493/1855-3974.1054.fcd
%G en
%F 10_26493_1855_3974_1054_fcd
Sylwia Cichacz. On zero sum-partition of Abelian groups into three sets and group distance magic labeling. Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 417-425. doi : 10.26493/1855-3974.1054.fcd. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1054.fcd/

Cité par Sources :