On ±1 eigenvectors of graphs
Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 415-423.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

While discussing his spectral bound on the independence number of a graph, Herbert Wilf asked back in 1986 what kind of a graph admits an eigenvector consisting solely of  ± 1 entries? We prove that Wilf’s problem is NP-complete, but also that the set of graphs having a  ± 1 eigenvector is quite rich, being closed under a number of different graph compositions.
DOI : 10.26493/1855-3974.1021.c0a
Keywords: Eigenvector, adjacency matrix, Wilf's problem
@article{10_26493_1855_3974_1021_c0a,
     author = {Dragan Stevanovi\'c},
     title = {On \ensuremath{\pm}1 eigenvectors of graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {415--423},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.26493/1855-3974.1021.c0a},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1021.c0a/}
}
TY  - JOUR
AU  - Dragan Stevanović
TI  - On ±1 eigenvectors of graphs
JO  - Ars Mathematica Contemporanea
PY  - 2016
SP  - 415
EP  - 423
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1021.c0a/
DO  - 10.26493/1855-3974.1021.c0a
LA  - en
ID  - 10_26493_1855_3974_1021_c0a
ER  - 
%0 Journal Article
%A Dragan Stevanović
%T On ±1 eigenvectors of graphs
%J Ars Mathematica Contemporanea
%D 2016
%P 415-423
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1021.c0a/
%R 10.26493/1855-3974.1021.c0a
%G en
%F 10_26493_1855_3974_1021_c0a
Dragan Stevanović. On ±1 eigenvectors of graphs. Ars Mathematica Contemporanea, Tome 11 (2016) no. 2, pp. 415-423. doi : 10.26493/1855-3974.1021.c0a. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1021.c0a/

Cité par Sources :