Affine primitive symmetric graphs of diameter two
Ars mathematica contemporanea, Tome 13 (2017) no. 1, pp. 137-165
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
Let n be a positive integer, q be a prime power, and V be a vector space of dimension n over Fq. Let G := V rtimes G0, where G0 is an irreducible subgroup of GL(V) which is maximal by inclusion with respect to being intransitive on the set of nonzero vectors. We are interested in the class of all diameter two graphs Γ that admit such a group G as an arc-transitive, vertex-quasiprimitive subgroup of automorphisms. In particular, we consider those graphs for which G0 is a subgroup of either Γ L(n,q) or Γ Sp(n, q) and is maximal in one of the Aschbacher classes Ci, where i ∈ {2, 4, 5, 6, 7, 8}. We are able to determine all graphs Γ which arise from G0 ≤ Γ L(n, q) with i ∈ {2, 4, 8}, and from G0 ≤ Γ Sp(n, q) with i ∈ {2, 8}. For the remaining classes we give necessary conditions in order for Γ to have diameter two, and in some special subcases determine all G-symmetric diameter two graphs.
Keywords:
Symmetric graphs, Cayley graphs, quasiprimitive permutation groups, linear groups
@article{10_26493_1855_3974_1020_2e7,
author = {Carmen Amarra and Michael Giudici and Cheryl E. Praeger},
title = {
{Affine} primitive symmetric graphs of diameter two
},
journal = {Ars mathematica contemporanea},
pages = {137--165},
year = {2017},
volume = {13},
number = {1},
doi = {10.26493/1855-3974.1020.2e7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1020.2e7/}
}
TY - JOUR AU - Carmen Amarra AU - Michael Giudici AU - Cheryl E. Praeger TI - Affine primitive symmetric graphs of diameter two JO - Ars mathematica contemporanea PY - 2017 SP - 137 EP - 165 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1020.2e7/ DO - 10.26493/1855-3974.1020.2e7 LA - en ID - 10_26493_1855_3974_1020_2e7 ER -
%0 Journal Article %A Carmen Amarra %A Michael Giudici %A Cheryl E. Praeger %T Affine primitive symmetric graphs of diameter two %J Ars mathematica contemporanea %D 2017 %P 137-165 %V 13 %N 1 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1020.2e7/ %R 10.26493/1855-3974.1020.2e7 %G en %F 10_26493_1855_3974_1020_2e7
Carmen Amarra; Michael Giudici; Cheryl E. Praeger. Affine primitive symmetric graphs of diameter two. Ars mathematica contemporanea, Tome 13 (2017) no. 1, pp. 137-165. doi: 10.26493/1855-3974.1020.2e7
Cité par Sources :