Affine primitive symmetric graphs of diameter two
Ars mathematica contemporanea, Tome 13 (2017) no. 1, pp. 137-165 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

Let n be a positive integer, q be a prime power, and V be a vector space of dimension n over Fq. Let G := V rtimes G0, where G0 is an irreducible subgroup of GL(V) which is maximal by inclusion with respect to being intransitive on the set of nonzero vectors. We are interested in the class of all diameter two graphs Γ  that admit such a group G as an arc-transitive, vertex-quasiprimitive subgroup of automorphisms. In particular, we consider those graphs for which G0 is a subgroup of either Γ L(n,q) or Γ Sp(n, q) and is maximal in one of the Aschbacher classes Ci, where i ∈ {2, 4, 5, 6, 7, 8}. We are able to determine all graphs Γ  which arise from G0 ≤ Γ L(n, q) with i ∈ {2, 4, 8}, and from G0 ≤ Γ Sp(n, q) with i ∈ {2, 8}. For the remaining classes we give necessary conditions in order for Γ  to have diameter two, and in some special subcases determine all G-symmetric diameter two graphs.
DOI : 10.26493/1855-3974.1020.2e7
Keywords: Symmetric graphs, Cayley graphs, quasiprimitive permutation groups, linear groups
@article{10_26493_1855_3974_1020_2e7,
     author = {Carmen Amarra and Michael Giudici and Cheryl E. Praeger},
     title = {
		{Affine} primitive symmetric graphs of diameter two
	},
     journal = {Ars mathematica contemporanea},
     pages = {137--165},
     year = {2017},
     volume = {13},
     number = {1},
     doi = {10.26493/1855-3974.1020.2e7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1020.2e7/}
}
TY  - JOUR
AU  - Carmen Amarra
AU  - Michael Giudici
AU  - Cheryl E. Praeger
TI  - Affine primitive symmetric graphs of diameter two
	
JO  - Ars mathematica contemporanea
PY  - 2017
SP  - 137
EP  - 165
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1020.2e7/
DO  - 10.26493/1855-3974.1020.2e7
LA  - en
ID  - 10_26493_1855_3974_1020_2e7
ER  - 
%0 Journal Article
%A Carmen Amarra
%A Michael Giudici
%A Cheryl E. Praeger
%T Affine primitive symmetric graphs of diameter two
	
%J Ars mathematica contemporanea
%D 2017
%P 137-165
%V 13
%N 1
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1020.2e7/
%R 10.26493/1855-3974.1020.2e7
%G en
%F 10_26493_1855_3974_1020_2e7
Carmen Amarra; Michael Giudici; Cheryl E. Praeger. Affine primitive symmetric graphs of diameter two. Ars mathematica contemporanea, Tome 13 (2017) no. 1, pp. 137-165. doi: 10.26493/1855-3974.1020.2e7

Cité par Sources :