Polytopes with groups of type PGL_2(q)
Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 163-171.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

There exists a unique regular polytope of rank at least 4 whose full automorphism group is a projective general linear group PGL2(q), q a prime power. This polytope is the 4-simplex and the corresponding group is PGL2(5) = S5.
DOI : 10.26493/1855-3974.102.290
Keywords: abstract polytopes, regular polytopes, projective linear groups
@article{10_26493_1855_3974_102_290,
     author = {Dimitri Leemans and Egon Schulte},
     title = {Polytopes with groups of type {PGL_2(q)}},
     journal = {Ars Mathematica Contemporanea},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2009},
     doi = {10.26493/1855-3974.102.290},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.102.290/}
}
TY  - JOUR
AU  - Dimitri Leemans
AU  - Egon Schulte
TI  - Polytopes with groups of type PGL_2(q)
JO  - Ars Mathematica Contemporanea
PY  - 2009
SP  - 163
EP  - 171
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.102.290/
DO  - 10.26493/1855-3974.102.290
LA  - en
ID  - 10_26493_1855_3974_102_290
ER  - 
%0 Journal Article
%A Dimitri Leemans
%A Egon Schulte
%T Polytopes with groups of type PGL_2(q)
%J Ars Mathematica Contemporanea
%D 2009
%P 163-171
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.102.290/
%R 10.26493/1855-3974.102.290
%G en
%F 10_26493_1855_3974_102_290
Dimitri Leemans; Egon Schulte. Polytopes with groups of type PGL_2(q). Ars Mathematica Contemporanea, Tome 2 (2009) no. 2, pp. 163-171. doi : 10.26493/1855-3974.102.290. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.102.290/

Cité par Sources :