Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces
[Finitude du nombre de diviseurs totalement géodésiques exceptionnels dans les variétés localement symétriques hermitiennes]
Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 4, pp. 613-631

Voir la notice de l'article provenant de la source Numdam

We prove that on a smooth complex surface which is a compact quotient of the bidisc or of the 2-ball, there is at most a finite number of totally geodesic curves with negative self-intersection. More generally, there are only finitely many exceptional totally geodesic divisors in a compact Hermitian locally symmetric space of noncompact type of dimension at least 2. This is deduced from a convergence result for currents of integration along totally geodesic subvarieties in compact Hermitian locally symmetric spaces, which itself follows from an equidistribution theorem for totally geodesic submanifolds in a locally symmetric space of finite volume.

Nous prouvons que sur une surface complexe lisse qui est un quotient compact du bidisque ou de la boule de dimension 2, il n’y a qu’un nombre fini de courbes totalement géodésiques d’auto-intersection strictement négative. Plus généralement, il n’y a qu’un nombre fini de diviseurs totalement géodésiques exceptionnels dans une variété localement symétrique (de type non compact) hermitienne compacte de dimension au moins 2. Ces énoncés sont déduits d’un théorème de convergence de courants d’intégration le long de sous-variétés totalement géodésiques dans les variétés localement symétriques hermitiennes compactes, lui-même obtenu à partir d’un résultat d’équidistribution des sous-variétés totalement géodésiques dans les variétés localement symétriques de volume fini.

DOI : 10.24033/bsmf.2767
Classification : 53C35, 32M15, 22E40, 37C40, 37C85, 32C30, 14G35
Keywords: Bounded Negativity conjecture, Hermitian locally symmetric spaces, totally geodesic submanifold, equidistribution, negative curve, exceptional divisor, current of integration
Mots-clés : Conjecture de la négativité bornée, espaces localement symétriques hermitiens, sous-variété totalement géodésique, équidistribution, courbe d’auto-intersection négative, diviseur exceptionnel, courant d’intégration

Koziarz, Vincent 1 ; Maubon, Julien 2

1 Univ. Bordeaux, IMB, CNRS UMR 5251 F-33400 Talence France
2 Université de Lorraine, CNRS Institut Élie Cartan de Lorraine, UMR 7502 F-54506 Vandœuvre-Lès-Nancy France
@article{BSMF_2018__146_4_613_0,
     author = {Koziarz, Vincent and Maubon, Julien},
     title = {Finiteness of totally geodesic exceptional divisors in {Hermitian} locally symmetric spaces},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {613--631},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {146},
     number = {4},
     year = {2018},
     doi = {10.24033/bsmf.2767},
     mrnumber = {3936536},
     zbl = {1420.32017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2767/}
}
TY  - JOUR
AU  - Koziarz, Vincent
AU  - Maubon, Julien
TI  - Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces
JO  - Bulletin de la Société Mathématique de France
PY  - 2018
SP  - 613
EP  - 631
VL  - 146
IS  - 4
PB  - Société mathématique de France
UR  - http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2767/
DO  - 10.24033/bsmf.2767
LA  - en
ID  - BSMF_2018__146_4_613_0
ER  - 
%0 Journal Article
%A Koziarz, Vincent
%A Maubon, Julien
%T Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces
%J Bulletin de la Société Mathématique de France
%D 2018
%P 613-631
%V 146
%N 4
%I Société mathématique de France
%U http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2767/
%R 10.24033/bsmf.2767
%G en
%F BSMF_2018__146_4_613_0
Koziarz, Vincent; Maubon, Julien. Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 4, pp. 613-631. doi: 10.24033/bsmf.2767

Cité par Sources :