Voir la notice de l'article provenant de la source Numdam
In this paper, we present some results about blow up of regular solutions to the homogeneous incompressible Navier-Stokes system, in the case of data in the Sobolev space , where Firstly, we will introduce the notion of minimal blow up Navier-Stokes solutions and show that the set of such solutions is not only nonempty but also compact in a certain sense. Secondly, we will state an uniform blow up rate for minimal Navier-Stokes solutions. The key tool is profile theory as established by P. Gérard [11].
Poulon, Eugénie 1
@article{BSMF_2018__146_2_355_0, author = {Poulon, Eug\'enie}, title = {About the behavior of regular {Navier-Stokes} solutions near the blow up}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {355--390}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {146}, number = {2}, year = {2018}, doi = {10.24033/bsmf.2760}, mrnumber = {3933879}, zbl = {1405.35143}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2760/} }
TY - JOUR AU - Poulon, Eugénie TI - About the behavior of regular Navier-Stokes solutions near the blow up JO - Bulletin de la Société Mathématique de France PY - 2018 SP - 355 EP - 390 VL - 146 IS - 2 PB - Société mathématique de France UR - http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2760/ DO - 10.24033/bsmf.2760 LA - en ID - BSMF_2018__146_2_355_0 ER -
%0 Journal Article %A Poulon, Eugénie %T About the behavior of regular Navier-Stokes solutions near the blow up %J Bulletin de la Société Mathématique de France %D 2018 %P 355-390 %V 146 %N 2 %I Société mathématique de France %U http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2760/ %R 10.24033/bsmf.2760 %G en %F BSMF_2018__146_2_355_0
Poulon, Eugénie. About the behavior of regular Navier-Stokes solutions near the blow up. Bulletin de la Société Mathématique de France, Tome 146 (2018) no. 2, pp. 355-390. doi: 10.24033/bsmf.2760
Cité par Sources :