Voir la notice de l'article provenant de la source Numdam
Let F be a discretely valued complete field with valuation ring and perfect residue field of cohomological dimension . In this paper, we generalize the Bruhat decomposition in Bruhat and Tits [Publ. Math. IHÉS 60 (1984)] from the case of simply connected F-groups to the case of arbitrary connected reductive F-groups. If k is algebraically closed, Haines and Rapoport [Adv. Math. 219 (2008)] define the Iwahori-Weyl group, and use it to solve this problem. Here we define the Iwahori-Weyl group in general, and relate our definition of the Iwahori-Weyl group to that of [Adv. Math. 219 (2008)].
@article{BSMF_2016__144_1_117_0, author = {Richarz, Timo}, title = {On the {Iwahori} {Weyl} group}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {117--124}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {144}, number = {1}, year = {2016}, doi = {10.24033/bsmf.2708}, mrnumber = {3481263}, zbl = {1342.20051}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2708/} }
TY - JOUR AU - Richarz, Timo TI - On the Iwahori Weyl group JO - Bulletin de la Société Mathématique de France PY - 2016 SP - 117 EP - 124 VL - 144 IS - 1 PB - Société mathématique de France UR - http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2708/ DO - 10.24033/bsmf.2708 LA - en ID - BSMF_2016__144_1_117_0 ER -
Richarz, Timo. On the Iwahori Weyl group. Bulletin de la Société Mathématique de France, Tome 144 (2016) no. 1, pp. 117-124. doi: 10.24033/bsmf.2708
Cité par Sources :