Family of intersecting totally real manifolds of (n,0) and germs of holomorphic diffeomorphisms
[Famille d'intersection de variétés totalement réelles de (n,0) et singularités CR]
Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 2, pp. 247-263

Voir la notice de l'article provenant de la source Numdam

We prove the existence (and give a characterization) of a germ of complex analytic set left invariant by an abelian group of germs of holomorphic diffeomorphisms at a common fixed point.We also give condition that ensure that such a group can be linearized holomorphically near the fixed point. It rests on a “small divisors condition” of the family of linear parts.

The second part of this article is devoted to the study families of totally real intersecting n-submanifolds of (n,0). We give some conditions which allow to straighten holomorphically the family. If it is not possible to do this formally, we construct a germ of complex analytic set at the origin which intersection with the family can be holomorphically straightened. The second part is an application of the first.

@article{BSMF_2015__143_2_247_0,
     author = {Stolovitch, Laurent},
     title = {Family of intersecting totally real manifolds of~$({\mathbb {C}}^n,0)$ and germs of holomorphic diffeomorphisms},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {247--263},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {143},
     number = {2},
     year = {2015},
     doi = {10.24033/bsmf.2685},
     mrnumber = {3351178},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2685/}
}
TY  - JOUR
AU  - Stolovitch, Laurent
TI  - Family of intersecting totally real manifolds of $({\mathbb {C}}^n,0)$ and germs of holomorphic diffeomorphisms
JO  - Bulletin de la Société Mathématique de France
PY  - 2015
SP  - 247
EP  - 263
VL  - 143
IS  - 2
PB  - Société mathématique de France
UR  - http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2685/
DO  - 10.24033/bsmf.2685
LA  - en
ID  - BSMF_2015__143_2_247_0
ER  - 
%0 Journal Article
%A Stolovitch, Laurent
%T Family of intersecting totally real manifolds of $({\mathbb {C}}^n,0)$ and germs of holomorphic diffeomorphisms
%J Bulletin de la Société Mathématique de France
%D 2015
%P 247-263
%V 143
%N 2
%I Société mathématique de France
%U http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2685/
%R 10.24033/bsmf.2685
%G en
%F BSMF_2015__143_2_247_0
Stolovitch, Laurent. Family of intersecting totally real manifolds of $({\mathbb {C}}^n,0)$ and germs of holomorphic diffeomorphisms. Bulletin de la Société Mathématique de France, Tome 143 (2015) no. 2, pp. 247-263. doi: 10.24033/bsmf.2685

Cité par Sources :