Voir la notice de l'article provenant de la source Numdam
We consider the quasi-periodic Jacobi operator in : , , where are analytic functions on , is not identically zero, and obeys some strong Diophantine condition. We consider the corresponding unimodular cocycle. We prove that if the Lyapunov exponent of the cocycle is positive for some , then there exist , such that for any . If for all in some compact interval , then is Hölder continuous on with Hölder exponent . In our derivation we follow the refined version of the Goldstein-Schlag method [3] developed by Bourgain and Jitomirskaya [2].
@article{BSMF_2014__142_4_635_0, author = {Tao, Kai}, title = {H\"older continuity of {Lyapunov} exponent for quasi-periodic {Jacobi} operators}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {635--671}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {142}, number = {4}, year = {2014}, doi = {10.24033/bsmf.2675}, mrnumber = {3306872}, zbl = {1309.47033}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2675/} }
TY - JOUR AU - Tao, Kai TI - Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators JO - Bulletin de la Société Mathématique de France PY - 2014 SP - 635 EP - 671 VL - 142 IS - 4 PB - Société mathématique de France UR - http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2675/ DO - 10.24033/bsmf.2675 LA - en ID - BSMF_2014__142_4_635_0 ER -
%0 Journal Article %A Tao, Kai %T Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators %J Bulletin de la Société Mathématique de France %D 2014 %P 635-671 %V 142 %N 4 %I Société mathématique de France %U http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2675/ %R 10.24033/bsmf.2675 %G en %F BSMF_2014__142_4_635_0
Tao, Kai. Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 4, pp. 635-671. doi: 10.24033/bsmf.2675
Cité par Sources :