Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators
[Continuité de Hölder des exposants de Lyapunov pour les opérateurs jacobiens quasi-périodiques]
Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 4, pp. 635-671

Voir la notice de l'article provenant de la source Numdam

We consider the quasi-periodic Jacobi operator Hx,ω in l2(): (Hx,ωφ)(n)=-b(x+(n+1)ω)φ(n+1)-b(x+nω)φ(n-1)+a(x+nω)φ(n)=Eφ(n), n, where a(x),b(x) are analytic functions on 𝕋, b is not identically zero, and ω obeys some strong Diophantine condition. We consider the corresponding unimodular cocycle. We prove that if the Lyapunov exponent L(E) of the cocycle is positive for some E=E0, then there exist ρ0=ρ0(a,b,ω,E0), β=β(a,b,ω) such that |L(E)-L(E')|<|E-E'|β for any E,E'(E0-ρ0,E0+ρ0). If L(E)>0 for all E in some compact interval I, then L(E) is Hölder continuous on I with Hölder exponent β=β(a,b,ω,I). In our derivation we follow the refined version of the Goldstein-Schlag method  [3] developed by Bourgain and Jitomirskaya [2].

Publié le :
DOI : 10.24033/bsmf.2675
@article{BSMF_2014__142_4_635_0,
     author = {Tao, Kai},
     title = {H\"older continuity of {Lyapunov} exponent for quasi-periodic {Jacobi} operators},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {635--671},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {142},
     number = {4},
     year = {2014},
     doi = {10.24033/bsmf.2675},
     mrnumber = {3306872},
     zbl = {1309.47033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2675/}
}
TY  - JOUR
AU  - Tao, Kai
TI  - Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators
JO  - Bulletin de la Société Mathématique de France
PY  - 2014
SP  - 635
EP  - 671
VL  - 142
IS  - 4
PB  - Société mathématique de France
UR  - http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2675/
DO  - 10.24033/bsmf.2675
LA  - en
ID  - BSMF_2014__142_4_635_0
ER  - 
%0 Journal Article
%A Tao, Kai
%T Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators
%J Bulletin de la Société Mathématique de France
%D 2014
%P 635-671
%V 142
%N 4
%I Société mathématique de France
%U http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2675/
%R 10.24033/bsmf.2675
%G en
%F BSMF_2014__142_4_635_0
Tao, Kai. Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 4, pp. 635-671. doi: 10.24033/bsmf.2675

Cité par Sources :