Voir la notice de l'article provenant de la source Numdam
We study the high frequency limit for a non-selfadjoint Helmholtz equation. This equation models the propagation of the electromagnetic field of a laser in an inhomogeneus material medium with non-constant absorption index. In this paper the absorption index can take negative values and we only use a damping condition on the classical limit of the problem. In this setting we first prove the absence of eigenvalue on the upper half-plane and close to an energy which satisfies this damping assumption. Then we generalize the resolvent estimates of Robert-Tamura and prove the limiting absorption principle. We finally study the semiclassical measures of the solution when the source term concentrates on a bounded submanifold of .
@article{BSMF_2014__142_4_591_0, author = {Royer, Julien}, title = {Uniform resolvent estimates for a non-dissipative {Helmholtz} equation}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {591--633}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {142}, number = {4}, year = {2014}, doi = {10.24033/bsmf.2674}, mrnumber = {3306871}, zbl = {1315.35064}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2674/} }
TY - JOUR AU - Royer, Julien TI - Uniform resolvent estimates for a non-dissipative Helmholtz equation JO - Bulletin de la Société Mathématique de France PY - 2014 SP - 591 EP - 633 VL - 142 IS - 4 PB - Société mathématique de France UR - http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2674/ DO - 10.24033/bsmf.2674 LA - en ID - BSMF_2014__142_4_591_0 ER -
%0 Journal Article %A Royer, Julien %T Uniform resolvent estimates for a non-dissipative Helmholtz equation %J Bulletin de la Société Mathématique de France %D 2014 %P 591-633 %V 142 %N 4 %I Société mathématique de France %U http://geodesic.mathdoc.fr/articles/10.24033/bsmf.2674/ %R 10.24033/bsmf.2674 %G en %F BSMF_2014__142_4_591_0
Royer, Julien. Uniform resolvent estimates for a non-dissipative Helmholtz equation. Bulletin de la Société Mathématique de France, Tome 142 (2014) no. 4, pp. 591-633. doi: 10.24033/bsmf.2674
Cité par Sources :