K-theory and logarithmic Hodge-Witt sheaves of formal schemes in characteristic p
[ K-théorie et faisceaux de Hodge-Witt logarithmiques de schémas formels en caractéristique p ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1537-1601.

Voir la notice de l'article provenant de la source Numdam

We describe the mod pr pro K-groups {Kn(A/Is)/pr}s of a regular local 𝔽p-algebra A modulo powers of a suitable ideal I, in terms of logarithmic Hodge-Witt groups, by proving pro analogues of the theorems of Geisser-Levine and Bloch-Kato-Gabber. This is achieved by combining the pro Hochschild-Kostant-Rosenberg theorem in topological cyclic homology with the development of the theory of de Rham-Witt complexes and logarithmic Hodge-Witt sheaves on formal schemes in characteristic p.

Applications include the following: the infinitesimal part of the weak Lefschetz conjecture for Chow groups; a p-adic version of Kato-Saito's conjecture that their Zariski and Nisnevich higher dimensional class groups are isomorphic; continuity results in K-theory; and criteria, in terms of integral or torsion étale-motivic cycle classes, for algebraic cycles on formal schemes to admit infinitesimal deformations.

Moreover, in the case n=1, we compare the étale cohomology of WrΩlog1 and the fppf cohomology of μpr on a formal scheme, and thus present equivalent conditions for line bundles to deform in terms of their classes in either of these cohomologies.

Nous décrivons les K-groups {Kn(A/Is)/pr}s modulo pr d'une 𝔽p-algèbre régulière locale A modulo les puissances d'un idéal approprié I en termes des groupes de Hodge-Witt logarithmique, en démontrant des analogues pro des théorèmes de Geisser-Levine et Bloch-Kato-Gabber. Ceci est accompli en utilisant le théorème d'Hochschild-Kostant-Rosenberg pro en homologie cyclique topologique et le développement de la théorie des complexes de de Rham-Witt et de Hodge-Witt logarithmique sur les 𝔽p-schémas formels.

Des applications incluent les suivants : la partie infinitésimale de la conjecture de Lefschetz faible pour les groupes de Chow ; une version p-adique de la conjecture de Kato-Saito que leurs groupes des classes de dimension supérieure Zariski et Nisnevich sont isomorphes ; des résultats de continuité en K-théorie ; et des conditions, en termes des classes de cycles motiviques étales entières ou torsions, pour que les cycles algébriques sur un schéma formel admettent des déformations infinitésimales.

De plus, dans le cas où n=1 nous comparons la cohomologie étale de WrΩlog1 et la cohomologie fppf de μpr sur un schéma formel, et ainsi présentons des conditions équivalentes pour que les fibres en droites déforment en termes de leurs classes dans chacune de ces cohomologies.

Publié le :
DOI : 10.24033/asens.2415
@article{ASENS_2019__52_6_1537_0,
     author = {Morrow, Matthew},
     title = {$K$-theory and logarithmic {Hodge-Witt} sheaves of formal schemes  in characteristic~$p$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1537--1601},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {6},
     year = {2019},
     doi = {10.24033/asens.2415},
     mrnumber = {4061020},
     zbl = {1440.19004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2415/}
}
TY  - JOUR
AU  - Morrow, Matthew
TI  - $K$-theory and logarithmic Hodge-Witt sheaves of formal schemes  in characteristic $p$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 1537
EP  - 1601
VL  - 52
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2415/
DO  - 10.24033/asens.2415
LA  - en
ID  - ASENS_2019__52_6_1537_0
ER  - 
%0 Journal Article
%A Morrow, Matthew
%T $K$-theory and logarithmic Hodge-Witt sheaves of formal schemes  in characteristic $p$
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 1537-1601
%V 52
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2415/
%R 10.24033/asens.2415
%G en
%F ASENS_2019__52_6_1537_0
Morrow, Matthew. $K$-theory and logarithmic Hodge-Witt sheaves of formal schemes  in characteristic $p$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 6, pp. 1537-1601. doi : 10.24033/asens.2415. http://geodesic.mathdoc.fr/articles/10.24033/asens.2415/

André, M., Grundl. math. Wissensch., 206, Springer, 1974, 341 pages | MR | Zbl

Bökstedt, M.; Hsiang, W. C.; Madsen, I. The cyclotomic trace and algebraic K-theory of spaces, Invent. math., Volume 111 (1993), pp. 465-539 (ISSN: 0020-9910) | MR | Zbl | DOI

Bloch, S.; Kato, K. p-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math., Volume 63 (1986), pp. 107-152 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Costeanu, V. On the 2-typical de Rham-Witt complex, Doc. Math., Volume 13 (2008), pp. 413-452 (ISSN: 1431-0635) | MR | Zbl | DOI

Colliot-Thélène, J.-L.; Hoobler, R. T.; Kahn, B., Algebraic K -theory (Toronto, ON, 1996) (Fields Inst. Commun.), Volume 16, Amer. Math. Soc., 1997, pp. 31-94 | MR | Zbl

de Jong, A. J. Tate conjecture for divisors (unpublished note)

de Jong, A. J. On a result of Artin (2011) ( http://www.math.columbia.edu/~dejong/ )

Dundas, B. I.; Morrow, M. Finite generation and continuity of topological Hochschild and cyclic homology, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017), pp. 201-238 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Elbaz-Vincent, P.; Müller-Stach, S. Milnor K-theory of rings, higher Chow groups and applications, Invent. math., Volume 148 (2002), pp. 177-206 (ISSN: 0020-9910) | MR | Zbl | DOI

Geisser, T., Handbook of K -theory. Vol. 1, 2, Springer, 2005, pp. 193-234 | MR | Zbl | DOI

Geisser, T.; Hesselholt, L. On the K-theory of complete regular local 𝔽p-algebras, Topology, Volume 45 (2006), pp. 475-493 (ISSN: 0040-9383) | MR | Zbl | DOI

Geisser, T.; Hesselholt, L. On relative and bi-relative algebraic K-theory of rings of finite characteristic, J. Amer. Math. Soc., Volume 24 (2011), pp. 29-49 (ISSN: 0894-0347) | MR | Zbl | DOI

Geisser, T.; Hesselholt, L., Algebraic K -theory (Seattle, WA, 1997) (Proc. Sympos. Pure Math.), Volume 67, Amer. Math. Soc., 1999, pp. 41-87 | MR | Zbl | DOI

Geisser, T.; Levine, M. The K-theory of fields in characteristic p , Invent. math., Volume 139 (2000), pp. 459-493 (ISSN: 0020-9910) | MR | Zbl | DOI

Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math., Volume 24 (1965), pp. 5-231 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Grothendieck, A., North-Holland Publishing Co.; Masson & Cie, Éditeur, 1968, 287 pages | MR | Zbl

Grothendieck, A., Dix exposés sur la cohomologie des schémas (Adv. Stud. Pure Math.), Volume 3, North-Holland, 1968, pp. 88-188 | MR | Zbl

Gros, M.; Suwa, N. Application d'Abel-Jacobi p-adique et cycles algébriques, Duke Math. J., Volume 57 (1988), pp. 579-613 (ISSN: 0012-7094) | MR | Zbl | DOI

Hesselholt, L. The big de Rham-Witt complex, Acta Math., Volume 214 (2015), pp. 135-207 (ISSN: 0001-5962) | MR | Zbl | DOI

Hesselholt, L. On the p-typical curves in Quillen's K-theory, Acta Math., Volume 177 (1996), pp. 1-53 (ISSN: 0001-5962) | MR | Zbl | DOI

Hesselholt, L.; Madsen, I. On the K-theory of local fields, Ann. of Math., Volume 158 (2003), pp. 1-113 (ISSN: 0003-486X) | MR | Zbl | DOI

Illusie, L., Lecture Notes in Math., 239, Springer, 1971, 355 pages | MR | Zbl

Illusie, L. Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup., Volume 12 (1979), pp. 501-661 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Izhboldin, O., Algebraic K -theory (Adv. Soviet Math.), Volume 4, Amer. Math. Soc., 1991, pp. 129-144 | MR | Zbl

Jannsen, U. Continuous étale cohomology, Math. Ann., Volume 280 (1988), pp. 207-245 (ISSN: 0025-5831) | MR | Zbl | DOI

Jannsen, U.; Saito, S.; Zhao, Y. Duality for relative logarithmic de Rham–Witt sheaves and wildly ramified class field theory over finite fields, Compos. Math., Volume 154 (2018), pp. 1306-1331 (ISSN: 0010-437X) | MR | Zbl | DOI

Kato, K., Applications of algebraic K -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) (Contemp. Math.), Volume 55, Amer. Math. Soc., 1986, pp. 241-253 | MR | Zbl | DOI

Kerz, M. Milnor K-theory of local rings with finite residue fields, J. Algebraic Geom., Volume 19 (2010), pp. 173-191 (ISSN: 1056-3911) | MR | Zbl | DOI

Kerz, M. Ideles in higher dimension, Math. Res. Lett., Volume 18 (2011), pp. 699-713 (ISSN: 1073-2780) | MR | Zbl | DOI

Kerz, M.; Saito, S. Chow group of 0-cycles with modulus and higher-dimensional class field theory, Duke Math. J., Volume 165 (2016), pp. 2811-2897 (ISSN: 0012-7094) | MR | Zbl | DOI

Kato, K.; Saito, S., Applications of algebraic K -theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) (Contemp. Math.), Volume 55, Amer. Math. Soc., 1986, pp. 255-331 | MR | Zbl | DOI

Kahn, B.; Saito, S.; Yamazaki, T. Reciprocity sheaves, Compos. Math., Volume 152 (2016), pp. 1851-1898 (ISSN: 0010-437X) | MR | Zbl | DOI

Kunz, E. On Noetherian rings of characteristic p , Amer. J. Math., Volume 98 (1976), pp. 999-1013 (ISSN: 0002-9327) | MR | Zbl | DOI

Langer, A.; Zink, T. De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 231-314 (ISSN: 1474-7480) | MR | Zbl | DOI

Matsumura, H., Cambridge Studies in Advanced Math., 8, Cambridge Univ. Press, 1989, 320 pages (ISBN: 0-521-36764-6) | MR | Zbl

Milne, J. S. Motivic cohomology and values of zeta functions, Compos. math., Volume 68 (1988) (ISSN: 0010-437X) | MR | Zbl | mathdoc-id

Morrow, M. K-theory of one-dimensional rings via pro-excision, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 225-272 (ISSN: 1474-7480) | MR | Zbl | DOI

Morrow, M. K2 of localisations of local rings, J. Algebra, Volume 399 (2014), pp. 190-204 (ISSN: 0021-8693) | MR | Zbl | DOI

Morrow, M. Pro cdh-descent for cyclic homology and K-theory, J. Inst. Math. Jussieu, Volume 15 (2016), pp. 539-567 (ISSN: 1474-7480) | MR | Zbl | DOI

Morrow, M. Pro unitality and pro excision in algebraic K-theory and cyclic homology, J. reine angew. Math., Volume 736 (2018), pp. 95-139 (ISSN: 0075-4102) | MR | Zbl | DOI

Morrow, M. A variational Tate conjecture in crystalline cohomology, J. Eur. Math. Soc., Volume 21 (2019), pp. 3467-3511 (ISSN: 1435-9855) | MR | Zbl | DOI

Mazza, C.; Voevodsky, V.; Weibel, C., Clay Mathematics Monographs, 2, Amer. Math. Soc.; Clay Mathematics Institute, MA, 2006, 216 pages (ISBN: 978-0-8218-3847-1; 0-8218-3847-4) | MR | Zbl

Popescu, D. General Néron desingularization, Nagoya Math. J., Volume 100 (1985), pp. 97-126 (ISSN: 0027-7630) | MR | Zbl | DOI

Popescu, D. General Néron desingularization and approximation, Nagoya Math. J., Volume 104 (1986), pp. 85-115 (ISSN: 0027-7630) | MR | Zbl | DOI

Patel, D.; Ravindra, G. V. Weak Lefschetz for Chow groups: infinitesimal lifting, Homology Homotopy Appl., Volume 16 (2014), pp. 65-84 (ISSN: 1532-0073) | MR | Zbl | DOI

Quillen, D. G. Homology of commutative rings (1968) (unpublished MIT notes)

Quillen, D. Higher algebraic K-theory. I, Algebraic K -theory, I: Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) (Lecture Notes in Math.), Volume 341 (1973), pp. 85-147 | MR | Zbl

Roos, J.-E. Sur les foncteurs dérivés de lim. Applications, C. R. Acad. Sci. Paris, Volume 252 (1961), pp. 3702-3704 (ISSN: 0001-4036) | MR | Zbl

Rost, M. Chow groups with coefficients, Doc. Math., Volume 1 (1996), pp. No. 16, 319-393 (ISSN: 1431-0635) | MR | Zbl | DOI

Rülling, K.; Saito, S. Higher Chow groups with modulus and relative Milnor K-theory, Trans. Amer. Math. Soc., Volume 370 (2018), pp. 987-1043 (ISSN: 0002-9947) | MR | Zbl | DOI

Shiho, A. On logarithmic Hodge-Witt cohomology of regular schemes, J. Math. Sci. Univ. Tokyo, Volume 14 (2007), pp. 567-635 (ISSN: 1340-5705) | MR | Zbl

Thomason, R. W.; Trobaugh, T., The Grothendieck Festschrift, Vol. III (Progr. Math.), Volume 88, Birkhäuser, 1990, pp. 247-435 | MR | Zbl | DOI

Cité par Sources :