Stochastic isentropic Euler equations
[Équations d'Euler stochastiques isentropiques]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 181-254.

Voir la notice de l'article provenant de la source Numdam

We study the stochastically forced system of isentropic Euler equations of gas dynamics with a γ-law for the pressure. We show the existence of martingale weak entropy solutions; we also discuss the existence and characterization of invariant measures in the concluding section.

Nous étudions le système d'Euler des gaz isentropiques, pour une loi de pression en ργ, avec un forçage stochastique. Nous prouvons l'existence de solutions martingales vérifiant des inégalités entropiques. Nous discutons également de l'existence et de la caractérisation de mesures invariantes dans la section de conclusion.

DOI : 10.24033/asens.2386
Classification : 60H15, 35R60, 35L65, 76N15.
Keywords: Stochastic partial differential equations, isentropic Euler equations, entropy solutions.
Mots-clés : Équations aux dérivées partielles stochastiques, système d'Euler isentropique, solutions entropiques.
@article{ASENS_2019__52_1_181_0,
     author = {Berthelin, Florent and Vovelle, Julien},
     title = {Stochastic isentropic {Euler} equations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {181--254},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {1},
     year = {2019},
     doi = {10.24033/asens.2386},
     mrnumber = {3940909},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2386/}
}
TY  - JOUR
AU  - Berthelin, Florent
AU  - Vovelle, Julien
TI  - Stochastic isentropic Euler equations
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 181
EP  - 254
VL  - 52
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2386/
DO  - 10.24033/asens.2386
LA  - en
ID  - ASENS_2019__52_1_181_0
ER  - 
%0 Journal Article
%A Berthelin, Florent
%A Vovelle, Julien
%T Stochastic isentropic Euler equations
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 181-254
%V 52
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2386/
%R 10.24033/asens.2386
%G en
%F ASENS_2019__52_1_181_0
Berthelin, Florent; Vovelle, Julien. Stochastic isentropic Euler equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 181-254. doi : 10.24033/asens.2386. http://geodesic.mathdoc.fr/articles/10.24033/asens.2386/

Audusse, E.; Boyaval, S.; Goutal, N.; Jodeau, M.; Ung, P., CEMRACS 2013—modelling and simulation of complex systems: stochastic and deterministic approaches (ESAIM Proc. Surveys), Volume 48, EDP Sciences, 2015, pp. 321-340 | DOI | MR

Attouch, H.; Buttazzo, G.; Michaille, G., MPS/SIAM Series on Optimization, 6, Society for Industrial and Applied Mathematics (SIAM); Mathematical Programming Society (MPS), 2006, 634 pages (ISBN: 0-89871-600-4) | MR | Zbl

Ball, J. M. Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., Volume 63 (1977), pp. 370-373 (ISSN: 0002-9939) | MR | Zbl | DOI

Bessaih, H. Stochastic weak attractor for a dissipative Euler equation, Electron. J. Probab., Volume 5 (2000) (ISSN: 1083-6489) | MR | Zbl | DOI

Bessaih, H., Seminar on Stochastic Analysis, Random Fields and Applications V (Progr. Probab.), Volume 59, Birkhäuser, 2008, pp. 23-36 | MR | Zbl | DOI

Bessaih, H. Martingale solutions for stochastic Euler equations, Stochastic Anal. Appl., Volume 17 (1999), pp. 713-725 (ISSN: 0736-2994) | MR | Zbl | DOI

Bessaih, H.; Flandoli, F. 2-D Euler equation perturbed by noise, NoDEA Nonlinear Differential Equations Appl., Volume 6 (1999), pp. 35-54 (ISSN: 1021-9722) | MR | Zbl | DOI

Breit, D.; Feireisl, E.; Hofmanová, M. Incompressible limit for compressible fluids with stochastic forcing, Arch. Ration. Mech. Anal., Volume 222 (2016), pp. 895-926 (ISSN: 0003-9527) | DOI | MR

Brzeźniak, Z.; Flandoli, F.; Maurelli, M. Existence and uniqueness for stochastic 2d Euler flows with bounded vorticity (preprint arXiv:1401.5938 ) | MR

Breit, D.; Hofmanová, M. Stochastic Navier-Stokes equations for compressible fluids, Indiana Univ. Math. J., Volume 65 (2016), pp. 1183-1250 (ISSN: 0022-2518) | DOI | MR

Billingsley, P., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, 1999, 277 pages (ISBN: 0-471-19745-9) | MR | Zbl | DOI

Brzeźniak, Z.; Ondreját, M. Weak solutions to stochastic wave equations with values in Riemannian manifolds, Comm. Partial Differential Equations, Volume 36 (2011), pp. 1624-1653 (ISSN: 0360-5302) | MR | Zbl | DOI

Brzeźniak, Z.; Peszat, S. Stochastic two dimensional Euler equations, Ann. Probab., Volume 29 (2001), pp. 1796-1832 (ISSN: 0091-1798) | MR | Zbl | DOI

Brzeźniak, Z.; Serrano, R. Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces, SIAM J. Control Optim., Volume 51 (2013), pp. 2664-2703 (ISSN: 0363-0129) | MR | Zbl | DOI

Bauzet, C.; Vallet, G.; Wittbold, P. The Cauchy problem for conservation laws with a multiplicative stochastic perturbation, J. Hyperbolic Differ. Equ., Volume 9 (2012), pp. 661-709 (ISSN: 0219-8916) | MR | Zbl | DOI

Capiński, M.; Cutland, N. J. Stochastic Euler equations on the torus, Ann. Appl. Probab., Volume 9 (1999), pp. 688-705 (ISSN: 1050-5164) | MR | Zbl | DOI

Chueh, K. N.; Conley, C. C.; Smoller, J. A. Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., Volume 26 (1977), pp. 373-392 (ISSN: 0022-2518) | MR | Zbl | DOI

Chen, G.-Q.; Ding, Q.; Karlsen, K. H. On nonlinear stochastic balance laws, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 707-743 (ISSN: 0003-9527) | MR | Zbl | DOI

Chen, G.-Q.; Frid, H. Decay of entropy solutions of nonlinear conservation laws, Arch. Ration. Mech. Anal., Volume 146 (1999), pp. 95-127 (ISSN: 0003-9527) | MR | Zbl | DOI

Cruzeiro, A.-B.; Flandoli, F.; Malliavin, P. Brownian motion on volume preserving diffeomorphisms group and existence of global solutions of 2D stochastic Euler equation, J. Funct. Anal., Volume 242 (2007), pp. 304-326 (ISSN: 0022-1236) | MR | Zbl | DOI

Cazenave, T.; Haraux, A., Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press Univ. Press, 1998, 186 pages (ISBN: 0-19-850277-X) | MR | Zbl

Chen, G. Q. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. III, Acta Math. Sci. (English Ed.), Volume 6 (1986), pp. 75-120 (ISSN: 0252-9602) | MR | Zbl | DOI

Castaing, C.; Raynaud de Fitte, P.; Valadier, M., Mathematics and its Applications, 571, Kluwer Academic Publishers, 2004, 320 pages (ISBN: 1-4020-1963-7) | MR | Zbl | DOI

Cruzeiro, A. B.; Torrecilla, I. On a 2D stochastic Euler equation of transport type: existence and geometric formulation, Stoch. Dyn., Volume 15 (2015), 1450012 pages (ISSN: 0219-4937) | MR | Zbl | DOI

Carrillo, J.; Wittbold, P. Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, Volume 156 (1999), pp. 93-121 (ISSN: 0022-0396) | MR | Zbl | DOI

Ding, X. X.; Chen, G. Q.; Luo, P. Z. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. I, II, Acta Math. Sci. (English Ed.), Volume 5 (1985) (ISSN: 0252-9602) | MR | Zbl | DOI

Debussche, A.; Hofmanová, M.; Vovelle, J. Degenerate parabolic stochastic partial differential equations: quasilinear case, Ann. Probab., Volume 44 (2016), pp. 1916-1955 (ISSN: 0091-1798) | DOI | MR

DiPerna, R. J. Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 27-70 (ISSN: 0003-9527) | MR | Zbl | DOI

DiPerna, R. J. Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., Volume 91 (1983), pp. 1-30 http://projecteuclid.org/euclid.cmp/1103940470 (ISSN: 0010-3616) | MR | Zbl | DOI

Doleans-Dade, C., Stochastic differential equations (C.I.M.E. Summer Sch.), Volume 77, Springer, 2010, pp. 5-73 | DOI | MR

Da Prato, G.; Zabczyk, J., Encyclopedia of Mathematics and its Applications, 44, Cambridge Univ. Press, 1992, 454 pages (ISBN: 0-521-38529-6) | MR | Zbl | DOI

Debussche, A.; Vovelle, J. Scalar conservation laws with stochastic forcing, J. Funct. Anal., Volume 259 (2010), pp. 1014-1042 (ISSN: 0022-1236) | MR | Zbl | DOI

Debussche, A.; Vovelle, J. Scalar conservation laws with stochastic forcing (2013) preprint http://math.univ-lyon1.fr/~vovelle/DebusscheVovelleRevised.pdf (revised version) | MR | Zbl

Debussche, A.; Vovelle, J. Invariant measure of scalar first-order conservation laws with stochastic forcing, Probab. Theory Related Fields, Volume 163 (2015), pp. 575-611 (ISSN: 0178-8051) | DOI | MR

E, W.; Khanin, K.; Mazel, A.; Sinai, Y. Invariant measures for Burgers equation with stochastic forcing, Ann. of Math., Volume 151 (2000), pp. 877-960 (ISSN: 0003-486X) | MR | Zbl | DOI

Feireisl, E.; Maslowski, B.; Novotný, A. Compressible fluid flows driven by stochastic forcing, J. Differential Equations, Volume 254 (2013), pp. 1342-1358 (ISSN: 0022-0396) | MR | Zbl | DOI

Feng, J.; Nualart, D. Stochastic scalar conservation laws, J. Funct. Anal., Volume 255 (2008), pp. 313-373 (ISSN: 0022-1236) | MR | Zbl | DOI

Glatt-Holtz, N. E.; Vicol, V. C. Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise, Ann. Probab., Volume 42 (2014), pp. 80-145 (ISSN: 0091-1798) | MR | Zbl | DOI

Gyöngy, I.; Krylov, N. Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, Volume 105 (1996), pp. 143-158 (ISSN: 0178-8051) | MR | Zbl | DOI

Glimm, J.; Lax, P. D., Memoirs of the American Mathematical Society, No. 101, Amer. Math. Soc., 1970, 112 pages | MR | Zbl

Gerbeau, J.-F.; Perthame, B. Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B, Volume 1 (2001), pp. 89-102 (ISSN: 1531-3492) | MR | Zbl | DOI

Gyöngy, I.; Rovira, C. On Lp-solutions of semilinear stochastic partial differential equations, Stochastic Process. Appl., Volume 90 (2000), pp. 83-108 (ISSN: 0304-4149) | MR | Zbl | DOI

Gess, B.; Souganidis, P. E. Scalar conservation laws with multiple rough fluxes, Commun. Math. Sci., Volume 13 (2015), pp. 1569-1597 (ISSN: 1539-6746) | DOI | MR

Gess, B.; Souganidis, P. E. Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws, Comm. Pure Appl. Math., Volume 70 (2017), pp. 1562-1597 (ISSN: 0010-3640) | DOI | MR

Hofmanová, M. Degenerate parabolic stochastic partial differential equations, Stochastic Process. Appl., Volume 123 (2013), pp. 4294-4336 (ISSN: 0304-4149) | MR | Zbl | DOI

Hofmanová, M. A Bhatnagar-Gross-Krook approximation to stochastic scalar conservation laws, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015), pp. 1500-1528 (ISSN: 0246-0203) | MR | mathdoc-id | DOI

Hofmanová, M. Scalar conservation laws with rough flux and stochastic forcing, Stoch. Partial Differ. Equ. Anal. Comput., Volume 4 (2016), pp. 635-690 (ISSN: 2194-0401) | DOI | MR

Hofmanová, M.; Seidler, J. On weak solutions of stochastic differential equations, Stoch. Anal. Appl., Volume 30 (2012), pp. 100-121 (ISSN: 0736-2994) | MR | Zbl | DOI

Jacod, J.; Shiryaev, A. N., Grundl. math. Wiss., 288, Springer, 2003, 661 pages (ISBN: 3-540-43932-3) | MR | Zbl | DOI

Kim, Y. J. Asymptotic behavior of solutions to scalar conservation laws and optimal convergence orders to N-waves, J. Differential Equations, Volume 192 (2003), pp. 202-224 (ISSN: 0022-0396) | MR | Zbl | DOI

Kim, J. U. On the stochastic quasi-linear symmetric hyperbolic system, J. Differential Equations, Volume 250 (2011), pp. 1650-1684 (ISSN: 0022-0396) | MR | Zbl | DOI

Lions, P.-L.; Perthame, B.; Souganidis, P. E. Scalar conservation laws with rough (stochastic) fluxes, Stoch. Partial Differ. Equ. Anal. Comput., Volume 1 (2013), pp. 664-686 (ISSN: 2194-0401) | MR | Zbl | DOI

Lions, P.-L.; Perthame, B.; Souganidis, P. E., Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2011–2012 (Sémin. Équ. Dériv. Partielles), École Polytech., 2013, pp. exp. no XXVI | MR | Zbl

Lions, P.-L.; Perthame, B.; Souganidis, P. E. Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case, Stoch. Partial Differ. Equ. Anal. Comput., Volume 2 (2014), pp. 517-538 (ISSN: 2194-0401) | MR | Zbl | DOI

Lions, P.-L.; Perthame, B.; Souganidis, P. E. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., Volume 49 (1996), pp. 599-638 (ISSN: 0010-3640) | MR | Zbl | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

Lions, P.-L.; Perthame, B.; Tadmor, E. Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys., Volume 163 (1994), pp. 415-431 http://projecteuclid.org/euclid.cmp/1104270470 (ISSN: 0010-3616) | MR | Zbl | DOI

Ladyženskaja, O. A.; Solonnikov, V. A.; Ural'ceva, N. N., Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23, Amer. Math. Soc., 1968, 648 pages | MR | Zbl

LeFloch, P. G.; Westdickenberg, M. Finite energy solutions to the isentropic Euler equations with geometric effects, J. Math. Pures Appl., Volume 88 (2007), pp. 389-429 (ISSN: 0021-7824) | MR | Zbl | DOI

Murat, F. Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 5 (1978), pp. 489-507 | MR | Zbl | mathdoc-id

Mellet, A.; Vasseur, A. A bound from below for the temperature in compressible Navier-Stokes equations, Monatsh. Math., Volume 157 (2009), pp. 143-161 (ISSN: 0026-9255) | MR | Zbl | DOI

Nirenberg, L. On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, Volume 13 (1959), pp. 115-162 | MR | Zbl | mathdoc-id

Ondreját, M. Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., Volume 15 (2010), pp. no. 33, 1041-1091 (ISSN: 1083-6489) | MR | Zbl | DOI

Serre, D., Fondations, Diderot Éditeur, 1996, 308 pages (ISBN: 2-84134-072-4) | MR

Simon, J. Compact sets in the space Lp(0,T;B) , Ann. Mat. Pura Appl., Volume 146 (1987), pp. 65-96 (ISSN: 0003-4622) | MR | Zbl | DOI

Skorohod, A. V. Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen., Volume 1 (1956), pp. 289-319 | MR | Zbl

Smith, S. A. Random perturbations of viscous, compressible fluids: global existence of weak solutions, SIAM J. Math. Anal., Volume 49 (2017), pp. 4521-4578 (ISSN: 0036-1410) | MR | Zbl | DOI

Stampacchia, G. Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier), Volume 15 (1965), pp. 189-258 (ISSN: 0373-0956) | MR | mathdoc-id | DOI

Tornatore, E.; Fujita Yashima, H. One-dimensional stochastic equations for a viscous barotropic gas, Ricerche Mat., Volume 46 (1997), pp. 255-283 (ISSN: 0035-5038) | MR | Zbl

Triebel, H., Monographs in Math., 84, Birkhäuser, 1992, 370 pages (ISBN: 3-7643-2639-5) | MR | Zbl | DOI

Vallet, G.; Wittbold, P. On a stochastic first-order hyperbolic equation in a bounded domain, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 12 (2009), pp. 613-651 (ISSN: 0219-0257) | MR | Zbl | DOI

Yosida, K., Grundl. math. Wiss., 123, Springer, 1980, 501 pages (ISBN: 3-540-10210-8) | MR

Cité par Sources :