Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension d=4
[Existence globale et diffusion des ondes pour l'équation de Schrödinger cubique focalisante en dimension 4]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 139-180.

Voir la notice de l'article provenant de la source Numdam

In this paper we prove global well-posedness and scattering for the focusing, cubic Schrödinger equation in four dimensions below the ground state. Previous work proved this in five dimensions and higher. To prove this, we combine the double Duhamel method with the long time Strichartz estimates.

Nous prouvons l'existence globale et la diffusion des ondes pour l'équation de Schrödinger cubique focalisante en dimension quatre. Des travaux antérieurs ont montré de tels résultats en dimension supérieure ou égale à cinq. Nous utilisons ici la méthode de Duhamel double et les estimations de Strichartz en temps long.

DOI : 10.24033/asens.2385
Classification : 35Q55.
Keywords: Scattering, Schrödinger equation, focusing.
Mots-clés : Diffusion des ondes, équation de Schrödinger, focalisation.
@article{ASENS_2019__52_1_139_0,
     author = {Dodson, Benjamin},
     title = {Global well-posedness and scattering  for the focusing, cubic {Schr\"odinger}  equation in dimension $d = 4$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {139--180},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {1},
     year = {2019},
     doi = {10.24033/asens.2385},
     mrnumber = {3940908},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2385/}
}
TY  - JOUR
AU  - Dodson, Benjamin
TI  - Global well-posedness and scattering  for the focusing, cubic Schrödinger  equation in dimension $d = 4$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 139
EP  - 180
VL  - 52
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2385/
DO  - 10.24033/asens.2385
LA  - en
ID  - ASENS_2019__52_1_139_0
ER  - 
%0 Journal Article
%A Dodson, Benjamin
%T Global well-posedness and scattering  for the focusing, cubic Schrödinger  equation in dimension $d = 4$
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 139-180
%V 52
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2385/
%R 10.24033/asens.2385
%G en
%F ASENS_2019__52_1_139_0
Dodson, Benjamin. Global well-posedness and scattering  for the focusing, cubic Schrödinger  equation in dimension $d = 4$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 139-180. doi : 10.24033/asens.2385. http://geodesic.mathdoc.fr/articles/10.24033/asens.2385/

Aubin, T. Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976), pp. 269-296 (ISSN: 0021-7824) | MR | Zbl

Berestycki, H.; Cazenave, T. Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., Volume 293 (1981), pp. 489-492 (ISSN: 0249-6321) | MR | Zbl

Bahouri, H.; Gérard, P. High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI

Bourgain, J., American Mathematical Society Colloquium Publications, 46, Amer. Math. Soc., 1999, 182 pages (ISBN: 0-8218-1919-4) | MR | Zbl | DOI

Bourgain, J. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., Volume 12 (1999), pp. 145-171 (ISSN: 0894-0347) | MR | Zbl | DOI

Bulut, A. Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, J. Funct. Anal., Volume 263 (2012), pp. 1609-1660 (ISSN: 0022-1236) | MR | Zbl | DOI

Bulut, A. The radial defocusing energy-supercritical cubic nonlinear wave equation in 1+5 , Nonlinearity, Volume 27 (2014), pp. 1859-1877 (ISSN: 0951-7715) | MR | Zbl | DOI

Bulut, A. The defocusing energy-supercritical cubic nonlinear wave equation in dimension five, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 6017-6061 (ISSN: 0002-9947) | DOI | MR

Cazenave, T., Courant Lecture Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences; Amer. Math. Soc., 2003, 323 pages (ISBN: 0-8218-3399-5) | MR | Zbl | DOI

Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on 3 , Comm. Pure Appl. Math., Volume 57 (2004), pp. 987-1014 (ISSN: 0010-3640) | MR | Zbl | DOI

Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in 3 , Ann. of Math., Volume 167 (2008), pp. 767-865 (ISSN: 0003-486X) | MR | Zbl | DOI

Cazenave, T.; Weissler, F. B. The Cauchy problem for the nonlinear Schrödinger equation in H1 , Manuscripta Math., Volume 61 (1988), pp. 477-494 (ISSN: 0025-2611) | MR | Zbl | DOI

Cazenave, T.; Weissler, F. B. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs , Nonlinear Anal., Volume 14 (1990), pp. 807-836 (ISSN: 0362-546X) | MR | Zbl | DOI

Dodson, B.; Lawrie, A. Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 1459-1529 (ISSN: 0003-9527) | DOI | MR

Dodson, B.; Lawrie, A. Scattering for the radial 3D cubic wave equation, Anal. PDE, Volume 8 (2015), pp. 467-497 (ISSN: 2157-5045) | DOI | MR

Dodson, B. Global well-posedness and scattering for the defocusing, L2-critical nonlinear Schrödinger equation when d3 , J. Amer. Math. Soc., Volume 25 (2012), pp. 429-463 (ISSN: 0894-0347) | MR | Zbl | DOI

Dodson, B. Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., Volume 285 (2015), pp. 1589-1618 (ISSN: 0001-8708) | DOI | MR

Dodson, B. Global well-posedness and scattering for the defocusing, L2 critical, nonlinear Schrödinger equation when d=1 , Amer. J. Math., Volume 138 (2016), pp. 531-569 (ISSN: 0002-9327) | DOI | MR

Dodson, B. Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d=2 , Duke Math. J., Volume 165 (2016), pp. 3435-3516 (ISSN: 0012-7094) | DOI | MR

Dodson, B. Global well-posedness and scattering for the defocusing, mass-critical generalized KdV equation, Ann. PDE, Volume 3 (2017), pp. Art. 5 (ISSN: 2199-2576) | DOI | MR

Glassey, R. T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., Volume 18 (1977), pp. 1794-1797 (ISSN: 0022-2488) | MR | Zbl | DOI

Grillakis, M. G. On nonlinear Schrödinger equations, Comm. Partial Differential Equations, Volume 25 (2000), pp. 1827-1844 (ISSN: 0360-5302) | MR | Zbl | DOI

Ginibre, J.; Velo, G. Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., Volume 144 (1992), pp. 163-188 http://projecteuclid.org/euclid.cmp/1104249221 (ISSN: 0010-3616) | MR | Zbl | DOI

Keraani, S. On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, Volume 175 (2001), pp. 353-392 (ISSN: 0022-0396) | MR | Zbl | DOI

Kenig, C. E.; Merle, F. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. math., Volume 166 (2006), pp. 645-675 (ISSN: 0020-9910) | MR | Zbl | DOI

Keel, M.; Tao, T. Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI

Killip, R.; Tao, T.; Vişan, M. The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), Volume 11 (2009), pp. 1203-1258 (ISSN: 1435-9855) | MR | Zbl | DOI

Killip, R.; Vişan, M. The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., Volume 132 (2010), pp. 361-424 (ISSN: 0002-9327) | MR | Zbl | DOI

Killip, R.; Vişan, M. The defocusing energy-supercritical nonlinear wave equation in three space dimensions, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 3893-3934 (ISSN: 0002-9947) | MR | Zbl | DOI

Killip, R.; Vişan, M. The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, Proc. Amer. Math. Soc., Volume 139 (2011), pp. 1805-1817 (ISSN: 0002-9939) | MR | Zbl | DOI

Killip, R.; Vişan, M. Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE, Volume 5 (2012), pp. 855-885 (ISSN: 2157-5045) | MR | Zbl | DOI

Killip, R.; Vişan, M., Evolution equations (Clay Math. Proc.), Volume 17, Amer. Math. Soc., 2013, pp. 325-437 | MR | Zbl

Killip, R.; Vişan, M.; Zhang, X. The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, Volume 1 (2008), pp. 229-266 (ISSN: 2157-5045) | MR | Zbl | DOI

Merle, F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., Volume 69 (1993), pp. 427-454 (ISSN: 0012-7094) | MR | Zbl | DOI

Miao, C.; Murphy, J.; Zheng, J. The defocusing energy-supercritical NLS in four space dimensions, J. Funct. Anal., Volume 267 (2014), pp. 1662-1724 (ISSN: 0022-1236) | MR | Zbl | DOI

Ryckman, E.; Vişan, M. Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in 1+4 , Amer. J. Math., Volume 129 (2007), pp. 1-60 (ISSN: 0002-9327) | MR | Zbl | DOI

Stein, E. M., Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970, 290 pages | MR | Zbl

Stein, E. M., Princeton Mathematical Series, 43, Princeton Univ. Press, 1993, 695 pages (ISBN: 0-691-03216-5) | MR | Zbl

Strichartz, R. S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977), pp. 705-714 http://projecteuclid.org/euclid.dmj/1077312392 (ISSN: 0012-7094) | MR | Zbl | DOI

Talenti, G. Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372 (ISSN: 0003-4622) | MR | Zbl | DOI

Tao, T. On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., Volume 1 (2004), pp. 1-48 (ISSN: 1548-159X) | MR | Zbl | DOI

Tao, T. Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math., Volume 11 (2005), pp. 57-80 http://nyjm.albany.edu:8000/j/2005/11_57.html (ISSN: 1076-9803) | MR | Zbl

Tao, T., CBMS Regional Conference Series in Mathematics, 106, Amer. Math. Soc., 2006, 373 pages (ISBN: 0-8218-4143-2) | MR | Zbl | DOI

Taylor, M. E., Mathematical Surveys and Monographs, 81, Amer. Math. Soc., 2000, 257 pages (ISBN: 0-8218-2633-6) | MR | Zbl

Taylor, M. E., Applied Mathematical Sciences, 115–117, Springer, 2011, 563 pages (ISBN: 0-387-94653-5) | DOI | MR

Taylor, M. E., Progress in Math., 100, Birkhäuser, 1991, 213 pages (ISBN: 0-8176-3595-5) | MR | Zbl | DOI

Tao, T.; Vişan, M.; Zhang, X. The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1281-1343 (ISSN: 0360-5302) | MR | Zbl | DOI

Vişan, M. The defocusing energy-critical nonlinear Schroedinger equation in dimensions five and higher, ISBN: 978-0542-96759-7, ProQuest LLC, Ann Arbor, MI (2006) http://gateway.proquest.com/... | MR

Vişan, M. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., Volume 138 (2007), pp. 281-374 (ISSN: 0012-7094) | MR | Zbl | DOI

Vişan, M. Global well-posedness and scattering for the defocusing cubic nonlinear Schrödinger equation in four dimensions, Int. Math. Res. Not., Volume 2012 (2012), pp. 1037-1067 (ISSN: 1073-7928) | MR | Zbl | DOI

Yajima, K. Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., Volume 110 (1987), pp. 415-426 http://projecteuclid.org/euclid.cmp/1104159313 (ISSN: 0010-3616) | MR | Zbl | DOI

Cité par Sources :