Voir la notice de l'article provenant de la source Numdam
The aim of the work is to provide a stable method to get sharp bounds for Boltzmann and Landau operators in weighted Sobolev spaces and in anisotropic spaces. The results and proofs have the following main features and innovations:
L'objectif de ce travail est de fournir une méthode robuste pour obtenir des estimations précises pour les opérateurs de Boltzmann et de Landau dans des espaces de Sobolev à poids et des espaces anisotropes. Les résultats et leur démonstration font ressortir les innovations suivantes :
@article{ASENS_2018__51_5_1253_0, author = {He, Ling-Bing}, title = {Sharp bounds for {Boltzmann} and {Landau} collision operators}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1253--1341}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {5}, year = {2018}, doi = {10.24033/asens.2375}, mrnumber = {3942041}, zbl = {1428.35266}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2375/} }
TY - JOUR AU - He, Ling-Bing TI - Sharp bounds for Boltzmann and Landau collision operators JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 1253 EP - 1341 VL - 51 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2375/ DO - 10.24033/asens.2375 LA - en ID - ASENS_2018__51_5_1253_0 ER -
%0 Journal Article %A He, Ling-Bing %T Sharp bounds for Boltzmann and Landau collision operators %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 1253-1341 %V 51 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2375/ %R 10.24033/asens.2375 %G en %F ASENS_2018__51_5_1253_0
He, Ling-Bing. Sharp bounds for Boltzmann and Landau collision operators. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 5, pp. 1253-1341. doi : 10.24033/asens.2375. http://geodesic.mathdoc.fr/articles/10.24033/asens.2375/
Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., Volume 152 (2000), pp. 327-355 (ISSN: 0003-9527) | MR | Zbl | DOI
Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff (preprint arXiv:1212.4632 ) | MR
Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., Volume 198 (2010), pp. 39-123 (ISSN: 0003-9527) | MR | Zbl | DOI
The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential, Anal. Appl. (Singap.), Volume 9 (2011), pp. 113-134 (ISSN: 0219-5305) | MR | Zbl | DOI
The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., Volume 262 (2012), pp. 915-1010 (ISSN: 0022-1236) | MR | Zbl | DOI
On the Boltzmann equation for long-range interactions, Comm. Pure Appl. Math., Volume 55 (2002), pp. 30-70 (ISSN: 0010-3640) | MR | Zbl | DOI
Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case, Arch. Ration. Mech. Anal., Volume 201 (2011), pp. 501-548 (ISSN: 0003-9527) | MR | Zbl | DOI
Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., Volume 24 (2011), pp. 771-847 (ISSN: 0894-0347) | MR | Zbl | DOI
Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., Volume 227 (2011), pp. 2349-2384 (ISSN: 0001-8708) | MR | Zbl | DOI
Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Comm. Math. Phys., Volume 312 (2012), pp. 447-476 (ISSN: 0010-3616) | MR | Zbl | DOI
Asymptotic analysis of the spatially homogeneous Boltzmann equation: grazing collisions limit, J. Stat. Phys., Volume 155 (2014), pp. 151-210 (ISSN: 0022-4715) | MR | Zbl | DOI
Well-posedness of the inhomogeneous Boltzmann equation with Hard potentials and Maxwellian molecules (in preparation)
Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinet. Relat. Models, Volume 1 (2008), pp. 453-489 (ISSN: 1937-5093) | MR | Zbl | DOI
Boltzmann collision operator for the infinite range potential (personal communication)
Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, Volume 6 (2013), pp. 625-648 (ISSN: 1937-5093) | MR | Zbl | DOI
, Appunti. Scuola Normale Superiore di Pisa, Edizioni della Normale, Pisa, 2009 | MR | Zbl
Global solutions in the critical Besov space for the non-cutoff Boltzmann equation, J. Differential Equations, Volume 261 (2016), pp. 4073-4134 (ISSN: 0022-0396) | MR | Zbl | DOI
Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., Volume 234 (2003), pp. 455-490 (ISSN: 0010-3616) | MR | Zbl | DOI
On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal., Volume 143 (1998), pp. 273-307 (ISSN: 0003-9527) | MR | Zbl | DOI
On the spatially homogeneous Landau equation for Maxwellian molecules, Math. Models Methods Appl. Sci., Volume 8 (1998), pp. 957-983 (ISSN: 0218-2025) | MR | Zbl | DOI
Studies in Statistical Mechanics. Vol. V)
, Univ. of Michigan Press, 1952 (reprinted in 1970 inCité par Sources :