Scattering resonances for highly oscillatory potentials
[Résonances de potentiels rapidement oscillants]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 865-925.

Voir la notice de l'article provenant de la source Numdam

We study resonances of compactly supported potentials Vε(x)=W(x,x/ε) where W:d×d/(2π)d, d odd. That means that Vε is a sum of a slowly varying potential, W0, and one oscillating at frequency 1/ε. When W00 we prove that there are no resonances above the line λ=-Aln(ε-1), except a simple resonance near 0 when d=1. We show that this result is optimal by constructing a one-dimensional example. This settles a conjecture of Duchêne-Vukićević-Weinstein [12]. When W00 and W smooth we prove that resonances in fixed strips admit an expansion in powers of ε. The argument provides a method for computing the coefficients of the expansion. We produce an effective potential converging uniformly to W0 as ε0 and whose resonances approach resonances of Vε modulo O(ε4). This improves the one-dimensional result of Duchêne, Vukićević and Weinstein and extends it to all odd dimensions.

Nous étudions les résonances de potentiels à support compact Vε(x)=W(x,x/ε), où W:d×d/(2π)d et d est impair. Ainsi, Vε est la somme d'un potentiel qui varie lentement W0 et d'un potentiel qui oscille à fréquence 1/ε. Quand W00 nous prouvons que Vε n'a pas de résonances dans la zone {λ-Aln(ε-1)} mise à part une unique résonance proche de 0 si d=1. Nous montrons par un exemple explicite que ce résultat est optimal. Cela prouve une conjecture de Duchêne-Vukićević-Weinstein [12]. Quand W00 et W est lisse nous montrons que les resonances de Vε qui restent bornées lorsque ε tend vers 0 admettent une expansion en puissances de ε. Les arguments de la preuve permettent de calculer les coefficients de cette expansion. Nous construisons un potentiel effectif qui converge uniformément vers W0 lorsque ε tend vers 0 et dont les résonances sont à distance O(ε4) de celles de W0. Cela améliore et étend les résultats de Duchêne, Vukićević et Weinstein à toutes les dimensions impaires.

Publié le :
DOI : 10.24033/asens.2368
Classification : 35P15, 35P25, 42B20.
Keywords: Scattering resonances, highly oscillatory potentials, asymptotic expansions.
Mots-clés : Résonances, potentiels rapidement oscillants, expansions asymptotiques.
@article{ASENS_2018__51_4_865_0,
     author = {Drouot, Alexis},
     title = {Scattering resonances for highly oscillatory potentials},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {865--925},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {4},
     year = {2018},
     doi = {10.24033/asens.2368},
     mrnumber = {3861565},
     zbl = {1408.35107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2368/}
}
TY  - JOUR
AU  - Drouot, Alexis
TI  - Scattering resonances for highly oscillatory potentials
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 865
EP  - 925
VL  - 51
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2368/
DO  - 10.24033/asens.2368
LA  - en
ID  - ASENS_2018__51_4_865_0
ER  - 
%0 Journal Article
%A Drouot, Alexis
%T Scattering resonances for highly oscillatory potentials
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 865-925
%V 51
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2368/
%R 10.24033/asens.2368
%G en
%F ASENS_2018__51_4_865_0
Drouot, Alexis. Scattering resonances for highly oscillatory potentials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 865-925. doi : 10.24033/asens.2368. http://geodesic.mathdoc.fr/articles/10.24033/asens.2368/

Blanes, S.; Casas, F. On the convergence and optimization of the Baker-Campbell-Hausdorff formula, Linear Algebra Appl., Volume 378 (2004), pp. 135-158 (ISSN: 0024-3795) | MR | Zbl | DOI

Borisov, D. I.; Gadyl'shin, R. R. On the spectrum of the Schrödinger operator with a rapidly oscillating compactly supported potential, Teoret. Mat. Fiz., Volume 147 (2006), pp. 58-63 (ISSN: 0564-6162) | MR | Zbl | DOI

Borisov, D. I. On the spectrum of the Schrödinger operator perturbed by a rapidly oscillating potential, J. Math. Sci. (N.Y.), Volume 139 (2006), pp. 6243-6322 (ISSN: 1072-3374) | MR | Zbl | DOI

Borisov, D. I. On some singular perturbations of periodic operators, Teoret. Mat. Fiz., Volume 151 (2007), pp. 207-218 (ISSN: 0564-6162) | MR | Zbl | DOI

Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; Knuth, D. E. On the Lambert W function, Adv. Comput. Math., Volume 5 (1996), pp. 329-359 (ISSN: 1019-7168) | MR | Zbl | DOI

Christiansen, T. Schrödinger operators with complex-valued potentials and no resonances, Duke Math. J., Volume 133 (2006), pp. 313-323 (ISSN: 0012-7094) | MR | Zbl | DOI

Dimassi, M.; Duong, A. T. Scattering and semi-classical asymptotics for periodic Schrödinger operators with oscillating decaying potential, Math. J. Okayama Univ., Volume 59 (2017), pp. 149-174 (ISSN: 0030-1566) | MR | Zbl

Dimassi, M. Semi-classical asymptotics for the Schrödinger operator with oscillating decaying potential, Canad. Math. Bull., Volume 59 (2016), pp. 734-747 (ISSN: 0008-4395) | MR | Zbl | DOI

Duchêne, V.; Raymond, N. Spectral asymptotics for the Schrödinger operator on the line with spreading and oscillating potentials (preprint arXiv:1609.01990 ) | MR

Drouot, A. Resonances for random highly oscillatory potentials (preprint arXiv:1703.08140 ) | MR

Drouot, A. Bound states for highly oscillatory potentials in dimension 2, SIAM J. Math. Anal., Volume 50 (2018), pp. 1471-1484 | MR | Zbl

Duchêne, V.; Vukićević, I.; Weinstein, M. I. Scattering and localization properties of highly oscillatory potentials, Comm. Pure Appl. Math., Volume 67 (2014), pp. 83-128 (ISSN: 0010-3640) | MR | Zbl | DOI

Duchêne, V.; Vukićević, I.; Weinstein, M. I. Homogenized description of defect modes in periodic structures with localized defects, Commun. Math. Sci., Volume 13 (2015), pp. 777-823 (ISSN: 1539-6746) | MR | Zbl | DOI

Duchêne, V.; Weinstein, M. I. Scattering, homogenization, and interface effects for oscillatory potentials with strong singularities, Multiscale Model. Simul., Volume 9 (2011), pp. 1017-1063 (ISSN: 1540-3459) | MR | Zbl | DOI

Dyatlov, S.; Zworski, M. Mathematical theory of scattering resonances (2018) (lecture notes http://math.mit.edu/~dyatlov/res/res_20180406.pdf ) | MR

Gesztesy, F.; Latushkin, Y.; Mitrea, M.; Zinchenko, M. Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys., Volume 12 (2005), pp. 443-471 (ISSN: 1061-9208) | MR | Zbl

Golowich, S. E.; Weinstein, M. I. Scattering resonances of microstructures and homogenization theory, Multiscale Model. Simul., Volume 3 (2005), pp. 477-521 (ISSN: 1540-3459) | MR | Zbl | DOI

Klopp, F., Spectral analysis of quantum Hamiltonians (Oper. Theory Adv. Appl.), Volume 224, Birkhäuser, 2012, pp. 171-182 | MR | Zbl | DOI

Klopp, F. Resonances for large one-dimensional “ergodic” systems, Anal. PDE, Volume 9 (2016), pp. 259-352 (ISSN: 2157-5045) | MR | Zbl | DOI

Phong, T. T. Resonances for 1D half-line periodic operators: I. Generic case (preprint arXiv:1509.03788 )

Phong, T. T. Resonances for 1D half-line periodic operators: II. Special case (preprint arXiv:1509.06133 )

Sá Barreto, A.; Zworski, M. Existence of resonances in potential scattering, Comm. Pure Appl. Math., Volume 49 (1996), pp. 1271-1280 (ISSN: 0010-3640) | MR | Zbl | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

Simon, B. Notes on infinite determinants of Hilbert space operators, Advances in Math., Volume 24 (1977), pp. 244-273 (ISSN: 0001-8708) | MR | Zbl | DOI

Smith, H. F.; Zworski, M. Heat traces and existence of scattering resonances for bounded potentials, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 455-475 http://aif.cedram.org/item?id=AIF_2016__66_2_455_0 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Titchmarsh, E. C., Oxford Univ. Press, Oxford, 1939, 454 pages | MR | JFM

Cité par Sources :