Voir la notice de l'article provenant de la source Numdam
In this paper, we prove that there is a canonical continuous Hermitian metric on the CM line bundle over the proper moduli space of smoothable Kähler-Einstein Fano varieties. The Chern curvature of this Hermitian metric is the Weil-Petersson current, which exists as a closed positive (1,1)-current on and extends the canonical Weil-Petersson current on the moduli space of smooth Kähler-Einstein Fano manifolds. As a consequence, we show that the CM line bundle is nef and big on and its restriction on is ample.
Dans cet article, nous montrons qu'il existe une métrique hermitienne continue et canonique sur le fibré en droites CM au-dessus de l'espace de modules des variétés de Kähler-Einstein régularisables. La courbure de Chern de cette métrique hermitienne est le courant de Weil-Petersson, qui existe en tant que (1,1)-courant fermé positif sur , et étend le courant canonique de Weil-Petersson défini sur l'espace de modules des variétés de Kähler-Einstein Fano régulières. Nous montrons aussi, en guise d'application de notre résultat, que le fibré des lignes CM est nef et big sur , et que sa restriction à est ample.
@article{ASENS_2018__51_3_739_0, author = {Li, Chi and Wang, Xiaowei and Xu, Chenyang}, title = {Quasi-projectivity of the moduli space of smooth {K\"ahler-Einstein} {Fano} manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {739--772}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {3}, year = {2018}, doi = {10.24033/asens.2365}, mrnumber = {3831036}, zbl = {1421.32033}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2365/} }
TY - JOUR AU - Li, Chi AU - Wang, Xiaowei AU - Xu, Chenyang TI - Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 739 EP - 772 VL - 51 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2365/ DO - 10.24033/asens.2365 LA - en ID - ASENS_2018__51_3_739_0 ER -
%0 Journal Article %A Li, Chi %A Wang, Xiaowei %A Xu, Chenyang %T Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 739-772 %V 51 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2365/ %R 10.24033/asens.2365 %G en %F ASENS_2018__51_3_739_0
Li, Chi; Wang, Xiaowei; Xu, Chenyang. Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 739-772. doi : 10.24033/asens.2365. http://geodesic.mathdoc.fr/articles/10.24033/asens.2365/
Log minimal model program for the moduli space of stable curves: the second flip (preprint arXiv:1308.1148 )
Weak semistable reduction in characteristic 0, Invent. math., Volume 139 (2000), pp. 241-273 | MR | Zbl | DOI
Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble), Volume 63, p. 2349-2042 | MR | Zbl | mathdoc-id | DOI
Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties (preprint arXiv:1111.7158, to appear in J. reine angew. Math ) | MR
K-polystability of -Fano varieties admitting Kähler-Einstein metrics, Anal. PDE, Volume 6 (2013), pp. 131-180 | Zbl
personal communication (2013)
Relative Kähler-Ricci flows and their quantization, Invent. math., Volume 203 (2016), pp. 973-1025 | MR | Zbl
Kähler-Einstein metrics on stable varieties and log canonical pairs, Geom. Funct. Anal., Volume 24 (2014), pp. 1683-1730 | MR | Zbl | DOI
Analytic torsion and holomorphic determinant bundles I, Commun. Math. Phys., Volume 115 (1988), pp. 49-78 | MR | Zbl | DOI
The augmented base locus of real divisors over arbitrary fields, Math. Ann., Volume 368 (2017), pp. 905-921 | MR | Zbl | DOI
Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. polytech. Math., Volume 4 (2017), pp. 87-139 | MR | Zbl | DOI
The Dirichlet problem for a complex Monge-Ampère equation, Invent. math., Volume 37 (1976), pp. 1-44 | MR | Zbl | DOI
On the structure of spaces with Ricci curvature bounded below I, J. Diff. Geom., Volume 45 (1997), pp. 1-75 | MR | Zbl
Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. no. 28, pp. 183-197 (ISSN: 0003-486X) | MR | Zbl
Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than , J. Amer. Math. Soc. no. 28, pp. 199-234 (ISSN: 0003-486X) | MR | Zbl
Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches and completion of the main proof., J. Amer. Math. Soc. no. 28, pp. 235-278 (ISSN: 0003-486X) | MR | Zbl
Le déterminant de la cohomolgie, Current Trends in Arithmetrical Algebraic Geometry, Contemp. Math., Volume 67 (1987), pp. 93-177 | MR | Zbl | DOI
Complex Analytic and Differential Geometry (2012) (preprint http://www.fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf ) | Zbl | mathdoc-id
Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. math., Volume 97 (1989), pp. 53-94 | MR | Zbl | DOI
Algebraic families of constant scalar curvature Kähler metrics (preprint arXiv:1503.05174 ) | MR
Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001), pp. 479-522 | MR | Zbl
Scalar curvature and stability of toric varieties, J. Differential Geom., Volume 62 (2002), pp. 289-349 | MR | Zbl
Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Volume 7 (2008), pp. 29-75 Adv. Lect. Math. (ALM), Handbook of geometric analysis. No. 1, Int. Press, Somerville, MA | MR | Zbl
Stability, birational transformations and the Kähler-Einstein problem, Surveys in Differential Geometry, Volume 17 (2012), pp. 203-228 | MR | Zbl | DOI
Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math., Volume 213 (2014), pp. 63-106 (ISSN: 0073-8301) | MR | Zbl | DOI
Kähler-Einstein metrics and the generalized Futaki invariant, Invent. math., Volume 110 (1992), pp. 315-335 | MR | Zbl | DOI
The Levi problem on complex spaces with singularities, Math. Ann., Volume 248 (1980), pp. 47-72 | MR | Zbl | DOI
The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math., Volume 26 (1990), pp. 101-183 | MR | Zbl | DOI
Semipositivity theorems for moduli problems, Ann. of Math., Volume 187 (2018), pp. 639-665 | MR | Zbl | DOI
An obstruction to the existence of Einstein-Kähler metrics, Inventiones Mathematicae (1983), pp. 437-443 | MR | Zbl | DOI
Kähler-Einstein metrics and integral invariants, Lecture Notes in Mathematics, Volume 1314 (1990) | MR | Zbl
, Encyclopaedia of Math. Sciences, 74, Springer, Berlin, 1994 | MR
Plurisubharmonische Funktionen Mengenräumen, Math. Z., Volume 65 (1956), pp. 175-194 | MR | Zbl | DOI
Über Modifikationen und exzeptionelle analytische Mengen, Math. Annalen, Volume 146 (1962), pp. 331-368 | MR | Zbl | DOI
Rational connectedness and boundedness of Fano manifolds, J. Differential Geom., Volume 36 (1992), pp. 765-779 | MR | Zbl
Non-quasi-projective moduli spaces, Ann. Math., Volume 164 (2006), pp. 1077-1096 | MR | Zbl | DOI
Moduli of varieties of general type, Handbook of moduli. Vol. II (Adv. Lect. Math. (ALM)), Volume 25 (2013), pp. 131-157 | MR | Zbl
Projectivity of complete moduli, J. Differ. Geom., Volume 32 (1990), pp. 235-268 | MR | Zbl
Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds, J. reine angew. Math, Volume 733 (2017), pp. 55-85 | MR | Zbl | DOI
Orbifold regularity of weak Kähler-Einstein metrics (preprint arXiv:1505.01925 ) | MR
On proper moduli space of smoothable Kähler-Einstein Fano varieties (preprint arXiv:1411.0761 ) | MR
Orbifolds and analytic torsions, Tran. Am. Math. Soc., Volume 357 (2005), pp. 2205-2233 | MR | Zbl | DOI
The continuity of Deligne's pairing, Internat. Math. Res. Notices, Volume 19 (1999), pp. 1057-1066 | MR | Zbl | DOI
Stable base loci of linear series, Math. Ann., Volume 318 (2000), pp. 837-847 (ISSN: 0025-5831) | MR | Zbl | DOI
On the moduli of Kähler-Einstein Fano manifolds, Proceedings of Kinosaki algebraic geometry symposium 2013 (preprint arXiv:1211.4833 )
Compact moduli space of Kähler-Einstein Fano varieties, Publ. Res. Inst. Math. Sci., Volume 51 (2015), pp. 549-565 | MR | Zbl | DOI
Compact Moduli Spaces of Del Pezzo Surfaces and Kähler-Einstein metrics, J. Diff. Geom., Volume 102 (2016), pp. 127-172 | MR | Zbl
An example of an asymptotically Chow unstable manifold with constant scalar curvature, Ann. Inst. Fourier (Grenoble), Volume 62 (2012), pp. 1265-1287 | MR | Zbl | mathdoc-id | DOI
Deligne pairing and the Knudsen-Mumford expansion, J. Differential Geom., Volume 78 (2008), pp. 475-496 | MR | Zbl
Scalar Curvature, moment maps, and the Deligne pairing, American Journal of Mathematics, Volume 126 (2004), pp. 693-712 | MR | Zbl | DOI
CM stability and the generalized Futaki invariant II, Astérisque, Volume 328 (2009), pp. 339-354 | mathdoc-id | Zbl | MR
Critères de platitude et de projectivité. Techniques de “platification” d'un module, Invent. math., Volume 13 (1971), pp. 1-89 (ISSN: 0020-9910) | MR | Zbl | DOI
Positivity of relative canonical bundles and applications, Invent. math., Volume 190 (2012), pp. 1-56 | MR | Zbl | DOI
Erratum: Positivity of relative canonical bundles and applications, Invent. math., Volume 192 (2013), pp. 253-255 | MR | Zbl | DOI
Existence and deformations of Kähler-Einstein metrics on smoothable -Fano varieties, Duke Math. J., Volume 165 | MR | Zbl
Quasi-projectivity of moduli spaces of polarized varieties, Ann. Math., Volume 159 (2004), pp. 597-639 | MR | Zbl | DOI
The Kähler-Ricci flow and K-polystability, Amer. J. Math., Volume 132 (2010), pp. 1077-1090 | MR | Zbl | DOI
Bott-Chern forms and geometric stability, Discret Contin. Dynam. Systems, Volume 6 (2000), pp. 211-220 | MR | Zbl | DOI
Existence of Einstein metrics on Fano manifolds, Metric and Differential Geometry,, Volume 297 (2012), pp. 119-159 | MR | Zbl | DOI
Partial -estimate for Kähler-Einstein metrics, Commun. Math. Stat., Volume 1 (2013), pp. 105-113 | MR | Zbl | DOI
K-stability and Kähler-Einstein metrics, Comm. Pure App. Math., Volume 68 (2015), pp. 1085-1156 | MR | Zbl | DOI
Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical Aspects of String Theory (ed. S.-T. Yau) (1987), pp. 629-646 | MR | Zbl | DOI
On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. math., Volume 101 (1990), pp. 101-172 | MR | Zbl | DOI
Kähler-Einstein metrics with positive scalar curvature, Invent. math., Volume 130 (1997), pp. 1-39 | MR | Zbl | DOI
Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989), pp. 13-52 | MR | Zbl | DOI
, Ergebn. Math. Grenzg., 30, Springer, Berlin, 1995 | MR | Zbl
On the singularity of Quillen metrics, Math. Ann., Volume 337 (2007), pp. 61-89 | MR | Zbl | DOI
Heights and reductions of semi-stable varieties, Compos. Math., Volume 104 (1996), pp. 77-105 | MR | Zbl | mathdoc-id
Cité par Sources :