Voir la notice de l'article provenant de la source Numdam
We consider the mass critical two dimensional nonlinear Schrödinger equation
On considère l'équation de Schrödinger non linéaire critique pour la masse en dimension deux
@article{ASENS_2018__51_3_701_0, author = {Martel, Yvan and Rapha\"el, Pierre}, title = {Strongly interacting blow up bubbles for the mass critical nonlinear {Schr\"odinger} equation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {701--737}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {3}, year = {2018}, doi = {10.24033/asens.2364}, mrnumber = {3831035}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2364/} }
TY - JOUR AU - Martel, Yvan AU - Raphaël, Pierre TI - Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 701 EP - 737 VL - 51 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2364/ DO - 10.24033/asens.2364 LA - en ID - ASENS_2018__51_3_701_0 ER -
%0 Journal Article %A Martel, Yvan %A Raphaël, Pierre %T Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 701-737 %V 51 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2364/ %R 10.24033/asens.2364 %G en %F ASENS_2018__51_3_701_0
Martel, Yvan; Raphaël, Pierre. Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 701-737. doi : 10.24033/asens.2364. http://geodesic.mathdoc.fr/articles/10.24033/asens.2364/
Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations, Volume 15 (2002), pp. 749-768 (ISSN: 0893-4983) | MR | Zbl | DOI
Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 3 (2004), pp. 139-170 (ISSN: 0391-173X) | MR | Zbl | mathdoc-id
Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation, Comm. Partial Differential Equations, Volume 36 (2011), pp. 487-531 (ISSN: 0360-5302) | MR | Zbl | DOI
Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-345 (ISSN: 0003-9527) | MR | Zbl | DOI
Minimal mass blow up for NLS on a manifold (2012)
Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 25 (1997), pp. 197-215 (ISSN: 0391-173X) | MR | Zbl | mathdoc-id
, Courant Lecture Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2003, 323 pages (ISBN: 0-8218-3399-5) | MR | Zbl | DOI
Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., Volume 39 (2007/08), pp. 1070-1111 (ISSN: 0036-1410) | MR | Zbl | DOI
Construction of multi-soliton solutions for the -supercritical generalized Korteweg-de Vries and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011), pp. 273-302 | MR | Zbl | DOI
Type II blow up manifold for the energy super critical wave equation (preprint arXiv:1407.4525, to appear in Mem. Amer. Math. Soc ) | MR
The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal., Volume 14 (1990), pp. 807-836 (ISSN: 0362-546X) | MR | Zbl | DOI
Exotic blowup solutions for the focusing wave equation in , Michigan Math. J., Volume 63 (2014), pp. 451-501 (ISSN: 0026-2285) | MR | Zbl | DOI
Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations, Commun. Pure Appl. Anal., Volume 14 (2015), pp. 1275-1326 (ISSN: 1534-0392) | DOI | MR
Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., Volume 18 (2009), pp. 1787-1840 (ISSN: 1016-443X) | MR | Zbl | DOI
Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., Volume 285 (2015), pp. 1589-1618 (ISSN: 0001-8708) | DOI | MR
Log-log blow up solutions blow up at exactly points (preprint arXiv:1510.00961 ) | MR | mathdoc-id
Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, Volume 5 (1992), pp. 973-997 (ISSN: 0893-4983) | MR | Zbl | DOI
Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal., Volume 272 (2017), pp. 866-917 (ISSN: 0022-1236) | DOI | MR
Nondispersive solutions to the -critical half-wave equation, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 61-129 (ISSN: 0003-9527) | MR | Zbl | DOI
Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math., Volume 62 (2009), pp. 1501-1550 (ISSN: 0010-3640) | MR | Zbl | DOI
Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc., Volume 11 (2009), pp. 1-125 | MR | Zbl | DOI
Full range of blow up exponents for the quintic wave equation in three dimensions, J. Math. Pures Appl., Volume 101 (2014), pp. 873-900 (ISSN: 0021-7824) | MR | Zbl | DOI
Renormalization and blow up for charge one equivariant critical wave maps, Invent. math., Volume 171 (2008), pp. 543-615 (ISSN: 0020-9910) | MR | Zbl | DOI
The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), Volume 11 (2009), pp. 1203-1258 (ISSN: 1435-9855) | MR | Zbl | DOI
Uniqueness of positive solutions of in , Arch. Rational Mech. Anal., Volume 105 (1989), pp. 243-266 (ISSN: 0003-9527) | MR | Zbl | DOI
Minimal mass blow up solutions for a double power nonlinear Schrödinger equation, Rev. Mat. Iberoam., Volume 32 (2016), pp. 795-833 (ISSN: 0213-2230) | DOI | MR
Asymptotic -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., Volume 127 (2005), pp. 1103-1140 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI
Construction of solutions with exactly blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., Volume 129 (1990), pp. 223-240 http://projecteuclid.org/euclid.cmp/1104180743 (ISSN: 0010-3616) | MR | Zbl | DOI
Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., Volume 9 (1993), pp. 427-454 | MR | Zbl
, Seminaire: Equations aux Dérivées Partielles. 2009–2010 (Sémin. Équ. Dériv. Partielles), École Polytech., Palaiseau, 2012 | MR | Zbl
Weak interaction between solitary waves of the generalized KdV equations, SIAM J. Math. Anal., Volume 35 (2003), pp. 1042-1080 (ISSN: 0036-1410) | MR | Zbl | DOI
Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 23 (2006), pp. 849-864 (ISSN: 0294-1449) | MR | Zbl | mathdoc-id | DOI
Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. math., Volume 183 (2011), pp. 563-648 (ISSN: 0020-9910) | MR | Zbl | DOI
Blow up for the critical generalized Korteweg de Vries equation. I: Dynamics near the soliton, Acta Math., Volume 212 (2014), pp. 59-140 (ISSN: 0001-5962) | MR | Zbl | DOI
Blow up for the critical generalized Korteweg de Vries equation III: exotic regimes, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 14 (2015), pp. 575-631 (ISSN: 0391-173X) | MR
Blow up for the critical generalized Korteweg de Vries equation. II: Minimal mass dynamics, J. of Math. Eur. Soc., Volume 17 (2015), pp. 1855-1925 | DOI
Stability in of the sum of solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006), pp. 405-466 | MR | Zbl | DOI
Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation, J. Eur. Math. Soc., Volume 14 (2012), pp. 1923-1953 | MR | Zbl | DOI
Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., Volume 13 (2003), pp. 591-642 (ISSN: 1016-443X) | MR | Zbl | DOI
On universality of blow-up profile for critical nonlinear Schrödinger equation, Invent. math., Volume 156 (2004), pp. 565-672 (ISSN: 0020-9910) | MR | Zbl | DOI
Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., Volume 253 (2005), pp. 675-704 (ISSN: 0010-3616) | MR | Zbl | DOI
The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., Volume 161 (2005), pp. 157-222 (ISSN: 0003-486X) | MR | Zbl | DOI
On a sharp lower bound on the blow-up rate for the critical nonlinear Schrödinger equation, J. Amer. Math. Soc., Volume 19 (2006), pp. 37-90 (ISSN: 0894-0347) | MR | Zbl | DOI
Type II blow up for the energy supercritical NLS, Camb. J. Math., Volume 3 (2015), pp. 439-617 (ISSN: 2168-0930) | DOI | MR
The instability of Bourgain-Wang solutions for the critical NLS, Amer. J. Math., Volume 135 (2013), pp. 967-1017 | MR | Zbl | DOI
On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation, Duke Math. J., Volume 163 (2014), pp. 369-431 (ISSN: 0012-7094) | MR | Zbl | DOI
On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., Volume 333 (2015), pp. 1529-1562 | MR | Zbl | DOI
Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., Volume 52 (1999), pp. 193-270 (ISSN: 0010-3640) | MR | Zbl | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, Volume 2 (2001), pp. 605-673 | MR | Zbl | DOI
Two soliton collision for nonlinear Schrödinger equations in dimension 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011), pp. 357-384 (ISSN: 0294-1449) | MR | Zbl | mathdoc-id | DOI
Existence and stability of the log-log blow-up dynamics for the -critical nonlinear Schrödinger equation in a domain, Ann. Henri Poincaré, Volume 8 (2007), pp. 1177-1219 (ISSN: 1424-0637) | MR | Zbl | DOI
Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., Volume 331 (2005), pp. 577-609 (ISSN: 0025-5831) | MR | Zbl | DOI
Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., Volume 24 (2011), pp. 471-546 (ISSN: 0894-0347) | MR | Zbl | DOI
Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., Volume 87 (1982/83), pp. 567-576 http://projecteuclid.org/euclid.cmp/1103922134 (ISSN: 0010-3616) | MR | Zbl | DOI
Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985), pp. 472-491 (ISSN: 0036-1410) | MR | Zbl | DOI
Cité par Sources :