Variations along the Fuchsian locus
[Variations le long du lieu fuchsien]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 2, pp. 487-547.

Voir la notice de l'article provenant de la source Numdam

The main result is an explicit expression for the Pressure Metric on the Hitchin component of surface group representations into 𝖯𝖲𝖫(n,) along the Fuchsian locus. The expression is in terms of a parametrization of the tangent space by holomorphic differentials, and it gives a precise relationship with the Petersson pairing. Along the way, variational formulas are established that generalize results from classical Teichmüller theory, such as Gardiner's formula, the relationship between length functions and Fenchel-Nielsen deformations, and variations of cross ratios.

Notre résultat principal est une expression explicite de la métrique de pression sur la composante de Hitchin de l'espace des représentations du groupe fondamental d'une surface dans 𝖯𝖲𝖫(n,) le long du lieu fuchsien. Cette formule utilise une paramétrisation de l'espace tangent à la composante de Hitchin en terme de différentielles holomorphes, et elle s'exprime explicitement en fonction du produit de Petersson. Au passage, nous établissons des relations qui généralisent les résultats classiques de la théorie de Teichmüller, tels que la formule de Gardiner, le rapport entre fonctions de longueur et déformations de Fenchel-Nielsen et les variations des birapports.

Publié le :
DOI : 10.24033/asens.2359
Classification : 37D35; 58D29, 32G15, 14D20.
Keywords: Pressure metric, higher Teichmüller space, Gardiner formula, Higgs bundles, Hitchin components.
Mots-clés : Métrique de pression, espace de Teichmüller généralisé, formule de Gardiner, fibrés de Higgs, composantes de Hitchin.
@article{ASENS_2018__51_2_487_0,
     author = {Labourie, Fran\c{c}ois and Wentworth, Richard},
     title = {Variations along the {Fuchsian} locus},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {487--547},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {2},
     year = {2018},
     doi = {10.24033/asens.2359},
     mrnumber = {3798306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2359/}
}
TY  - JOUR
AU  - Labourie, François
AU  - Wentworth, Richard
TI  - Variations along the Fuchsian locus
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 487
EP  - 547
VL  - 51
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2359/
DO  - 10.24033/asens.2359
LA  - en
ID  - ASENS_2018__51_2_487_0
ER  - 
%0 Journal Article
%A Labourie, François
%A Wentworth, Richard
%T Variations along the Fuchsian locus
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 487-547
%V 51
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2359/
%R 10.24033/asens.2359
%G en
%F ASENS_2018__51_2_487_0
Labourie, François; Wentworth, Richard. Variations along the Fuchsian locus. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 2, pp. 487-547. doi : 10.24033/asens.2359. http://geodesic.mathdoc.fr/articles/10.24033/asens.2359/

Atiyah, M. F.; Bott, R. The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983), pp. 523-615 (ISSN: 0080-4614) | MR | Zbl | DOI

Ahlfors, L. V. Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math., Volume 74 (1961), pp. 171-191 (ISSN: 0003-486X) | MR | Zbl | DOI

Baraglia, D. Cyclic Higgs bundles and the affine Toda equations, Geom. Dedicata, Volume 174 (2015), pp. 25-42 (ISSN: 0046-5755) | MR | Zbl | DOI

Bridgeman, M.; Canary, R.; Labourie, F.; Sambarino, A. The pressure metric for Anosov representations, Geom. Funct. Anal., Volume 25 (2015), pp. 1089-1179 (ISSN: 1016-443X) | MR | DOI

Beilinson, M. F.; Drinfeld, V. Opers (preprint arXiv:math/0501398 )

Bradlow, S. B.; García-Prada, O.; Gothen, P. B. Surface group representations and U(p,q)-Higgs bundles, J. Differential Geom., Volume 64 (2003), pp. 111-170 http://projecteuclid.org/euclid.jdg/1090426889 (ISSN: 0022-040X) | MR | Zbl

Bridgeman, M. Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space, Geom. Topol., Volume 14 (2010), pp. 799-831 (ISSN: 1465-3060) | MR | Zbl | DOI

Bridgeman, M. J.; Taylor, E. C. An extension of the Weil-Petersson metric to quasi-Fuchsian space, Math. Ann., Volume 341 (2008), pp. 927-943 (ISSN: 0025-5831) | MR | Zbl | DOI

Ben-Zvi, D.; Frenkel, E. Spectral curves, opers and integrable systems, Publ. Math. IHÉS, Volume 94 (2001), pp. 87-159 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Corlette, K. Flat G-bundles with canonical metrics, J. Differential Geom., Volume 28 (1988), pp. 361-382 http://projecteuclid.org/euclid.jdg/1214442469 (ISSN: 0022-040X) | MR | Zbl

Dalakov, P. Higgs bundles and opers, ISBN: 978-0549-57408-8, ProQuest LLC, Ann Arbor, MI (2008) http://gateway.proquest.com/... | MR

Dickey, L. Lectures on classical W-algebras, Acta Applicandae Mathematicae, Volume 47 (1997), pp. 243-321 | MR | Zbl | DOI

Donaldson, S. K. Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc., Volume 55 (1987), pp. 127-131 (ISSN: 0024-6115) | MR | Zbl | DOI

Drinfeld, V.; Sokolov, V. V. Equations of Korteweg-de Vries type, and simple Lie algebras, Dokl. Akad. Nauk SSSR, Volume 258 (1981), pp. 11-16 (ISSN: 0002-3264) | MR | Zbl

Gardiner, F. P. Schiffer's interior variation and quasiconformal mapping, Duke Math. J., Volume 42 (1975), pp. 371-380 http://projecteuclid.org/euclid.dmj/1077311057 (ISSN: 0012-7094) | MR | Zbl | DOI

Goldman, W. M. The symplectic nature of fundamental groups of surfaces, Adv. in Math., Volume 54 (1984), pp. 200-225 (ISSN: 0001-8708) | MR | Zbl | DOI

Goldman, W. M. Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. math., Volume 85 (1986), pp. 263-302 (ISSN: 0020-9910) | MR | Zbl | DOI

Guha, P. Euler-Poincaré flows on sl n opers and integrability, Acta Appl. Math., Volume 95 (2007), pp. 1-30 (ISSN: 0167-8019) | MR | Zbl | DOI

Guichard, O.; Wienhard, A. Anosov representations: domains of discontinuity and applications, Invent. math., Volume 190 (2012), pp. 357-438 (ISSN: 0020-9910) | MR | Zbl | DOI

Hejhal, D. A. Monodromy groups and Poincaré series, Bull. Amer. Math. Soc., Volume 84 (1978), pp. 339-376 (ISSN: 0002-9904) | MR | Zbl | DOI

Hitchin, N., Surveys in differential geometry 2016. Advances in geometry and mathematical physics (Surv. Differ. Geom.), Volume 21, Int. Press, Somerville, MA, 2016, pp. 139-163 | MR

Hitchin, N. J. The self-duality equations on a Riemann surface, Proc. London Math. Soc., Volume 55 (1987), pp. 59-126 (ISSN: 0024-6115) | MR | Zbl | DOI

Hitchin, N. J. Lie groups and Teichmüller space, Topology, Volume 31 (1992), pp. 449-473 (ISSN: 0040-9383) | MR | Zbl | DOI

Kostant, B. The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., Volume 81 (1959), pp. 973-1032 (ISSN: 0002-9327) | MR | Zbl | DOI

Labourie, F. Anosov flows, surface groups and curves in projective space, Invent. math., Volume 165 (2006), pp. 51-114 (ISSN: 0020-9910) | MR | Zbl | DOI

Labourie, F. Cross ratios, surface groups, PSL (n,𝐑) and diffeomorphisms of the circle, Publ. Math. IHÉS, Volume 106 (2007), pp. 139-213 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Labourie, F. Existence d'applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 877-882 (ISSN: 0002-9939) | MR | Zbl

Lawton, S.; Louder, L.; McReynolds, D. B. Decision problems, complexity, traces, and representations, Groups Geom. Dyn., Volume 11 (2017), pp. 165-188 (ISSN: 1661-7207) | MR | DOI

McMullen, C. T. Thermodynamics, dimension and the Weil-Petersson metric, Invent. math., Volume 173 (2008), pp. 365-425 (ISSN: 0020-9910) | MR | Zbl | DOI

Nitsure, N. Moduli space of semistable pairs on a curve, Proc. London Math. Soc., Volume 62 (1991), pp. 275-300 (ISSN: 0024-6115) | MR | Zbl | DOI

Panyushev, D. I. The Dynkin index and 𝔰𝔩2-subalgebras of simple Lie algebras, J. Algebra, Volume 430 (2015), pp. 15-25 (ISSN: 0021-8693) | MR | DOI

Petersson, H. Konstruktion der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichletreihen mit Eulerscher Produktentwicklung I, Math. Ann., Volume 116 (1939), pp. 401-412 (ISSN: 0025-5831) | MR | Zbl | DOI

Segal, G. The geometry of the KdV equation, Internat. J. Modern Phys. A, Volume 6 (1991), pp. 2859-2869 Topological methods in quantum field theory (Trieste, 1990) (ISSN: 0217-751X) | MR | Zbl | DOI

Simpson, C. T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., Volume 1 (1988), pp. 867-918 (ISSN: 0894-0347) | MR | Zbl | DOI

Simpson, C. T. Higgs bundles and local systems, Publ. Math. IHÉS, Volume 75 (1992), pp. 5-95 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Simpson, C. T. Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math. IHÉS, Volume 79 (1994), pp. 47-129 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Simpson, C. T. Moduli of representations of the fundamental group of a smooth projective variety. II, Publ. Math. IHÉS, Volume 80 (1994), pp. 5-79 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

van Moerbeke, P. Algèbres 𝒲 et équations non linéaires, Séminaire Bourbaki, vol. 1997/1998, exposé no 839, Astérisque, Volume 252 (1998), pp. 105-129 (ISSN: 0303-1179) | MR | Zbl | mathdoc-id

Weil, A. Remarks on the cohomology of groups, Ann. of Math., Volume 80 (1964), pp. 149-157 (ISSN: 0003-486X) | MR | Zbl | DOI

Wentworth, R. A., Geometry and quantization of moduli spaces (Adv. Courses Math. CRM Barcelona), Birkhäuser, 2016, pp. 165-219 | MR | DOI

Wolpert, S. On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math., Volume 117 (1983), pp. 207-234 (ISSN: 0003-486X) | MR | Zbl | DOI

Wolpert, S. A. Thurston's Riemannian metric for Teichmüller space, J. Differential Geom., Volume 23 (1986), pp. 143-174 http://projecteuclid.org/euclid.jdg/1214440024 (ISSN: 0022-040X) | MR | Zbl

Wolf, M. The Teichmüller theory of harmonic maps, J. Differential Geom., Volume 29 (1989), pp. 449-479 http://projecteuclid.org/euclid.jdg/1214442885 (ISSN: 0022-040X) | MR | Zbl

Cité par Sources :