Voir la notice de l'article provenant de la source Numdam
We prove that every three-dimensional vector field can be accumulated by Morse-Smale ones, or by ones with a transverse homoclinic intersection of some hyperbolic periodic orbit. In contrast to the case of diffeomorphisms [14], the main difficulty here is that we need to deal with singularities. We also make progress on another conjecture related to Palis in this paper.
Nous montrons que tout champ de vecteurs en dimension trois peut être accumulé en topologie ou bien par un champ Morse-Smale, ou bien par un champ possédant une intersection homocline transverse associée à une orbite périodique hyperbolique. Contrairement au cas des difféomorphismes [14], la principale difficulté ici consiste à traiter les singularités. Nous progressons également en direction d'une autre conjecture de Palis.
@article{ASENS_2018__51_1_39_0, author = {Gan, Shaobo and Yang, Dawei}, title = {Morse-Smale systems and horseshoes for three dimensional singular flows}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {39--112}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {1}, year = {2018}, doi = {10.24033/asens.2351}, mrnumber = {3764038}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2351/} }
TY - JOUR AU - Gan, Shaobo AU - Yang, Dawei TI - Morse-Smale systems and horseshoes for three dimensional singular flows JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 39 EP - 112 VL - 51 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2351/ DO - 10.24033/asens.2351 LA - en ID - ASENS_2018__51_1_39_0 ER -
%0 Journal Article %A Gan, Shaobo %A Yang, Dawei %T Morse-Smale systems and horseshoes for three dimensional singular flows %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 39-112 %V 51 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2351/ %R 10.24033/asens.2351 %G en %F ASENS_2018__51_1_39_0
Gan, Shaobo; Yang, Dawei. Morse-Smale systems and horseshoes for three dimensional singular flows. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 39-112. doi : 10.24033/asens.2351. http://geodesic.mathdoc.fr/articles/10.24033/asens.2351/
The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR, Volume 234 (1977), pp. 336-339 (ISSN: 0002-3264) | MR | Zbl
, Mathematical events of the twentieth century, Springer, Berlin, 2006, pp. 1-17 | MR | Zbl
Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003), pp. 805-841 (ISSN: 0294-1449) | MR | Zbl | mathdoc-id | DOI
Création de connexions en topologie , Ergodic Theory Dynam. Systems, Volume 21 (2001), pp. 339-381 (ISSN: 0143-3857) | MR | Zbl | DOI
Récurrence et généricité, Invent. math., Volume 158 (2004), pp. 33-104 (ISSN: 0020-9910) | MR | Zbl | DOI
A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., Volume 158 (2003), pp. 355-418 (ISSN: 0003-486X) | MR | Zbl | DOI
, Encyclopaedia of Math. Sciences, 102, Springer, Berlin, 2005, 384 pages (ISBN: 3-540-22066-6) | MR | Zbl
Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 1307-1337 (ISSN: 0143-3857) | MR | Zbl | DOI
On the existence of non-trivial homoclinic classes, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 1473-1508 (ISSN: 0143-3857) | MR | Zbl | DOI
Dominated chain recurrent class with singularities, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 14 (2015), pp. 83-99 (ISSN: 0391-173X) | MR
Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Nov. Lyncaei, Volume 53 (1935), pp. 85-216 | Zbl | JFM
, CBMS Regional Conference Series in Mathematics, 38, Amer. Math. Soc., Providence, R.I., 1978, 89 pages (ISBN: 0-8218-1688-8) | MR | Zbl
Periodic orbits and chain-transitive sets of -diffeomorphisms, Publ. Math. IHÉS, Volume 104 (2006), pp. 87-141 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI
Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems, Ann. of Math., Volume 172 (2010), pp. 1641-1677 (ISSN: 0003-486X) | MR | Zbl | DOI
Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 1-49 (ISSN: 1435-9855) | MR | DOI
Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., Volume 158 (1971), pp. 301-308 (ISSN: 0002-9947) | MR | Zbl | DOI
A strange, strange attractor, The Hopf bifurcation theorems and its applications (Applied Mathematical Series), Volume 19 (1976), pp. 368-381 | DOI
Structural stability of Lorenz attractors, Publ. Math. IHÉS, Volume 50 (1979), pp. 59-72 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI
Connecting invariant manifolds and the solution of the stability and -stability conjectures for flows, Ann. of Math., Volume 145 (1997), pp. 81-137 (ISSN: 0003-486X) | MR | Zbl | DOI
, Lecture Notes in Math., 583, Springer, Berlin-New York, 1977, 149 pages | MR | Zbl
Contribution à la théorie des champs génériques, Contributions to Differential Equations, Volume 2 (1963), pp. 457-484 | MR | Zbl
Addendum et corrections au mémoire: “Contributions à la théorie des champs génériques”, Contributions to Differential Equations, Volume 3 (1964), pp. 411-420 | MR | Zbl
Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 239-269 (ISSN: 1078-0947) | MR | Zbl | DOI
A basic property of a certain class of differential systems, Acta Math. Sinica, Volume 22 (1979), pp. 316-343 (ISSN: 0583-1431) | MR | Zbl
On the stability conjecture, Chinese Ann. Math., Volume 1 (1980), pp. 9-30 | MR | Zbl
Obstruction sets. II, Beijing Daxue Xuebao, Volume 2 (1981), pp. 1-36 | MR
Some uniformity properties of ordinary differential systems and a generalization of an existence theorem for periodic orbits, Beijing Daxue Xuebao, Volume 2 (1985), pp. 1-19 (ISSN: 0479-8023) | MR
On -contractible orbits of vector fields, Systems Sci. Math. Sci., Volume 2 (1989), pp. 193-227 (ISSN: 1000-9590) | MR | Zbl
Deterministic nonperiodic flow, J. Atmosph. Sci., Volume 20 (1963), pp. 130-141 | MR | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
An ergodic closing lemma, Ann. of Math., Volume 116 (1982), pp. 503-540 (ISSN: 0003-486X) | MR | Zbl | DOI
A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 1575-1600 (ISSN: 0143-3857) | MR | Zbl | DOI
On robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998), pp. 81-86 (ISSN: 0764-4442) | MR | Zbl
Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math., Volume 160 (2004), pp. 375-432 (ISSN: 0003-486X) | MR | Zbl | DOI
, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 191-202 | MR | Zbl
Diffeomorphisms with infinitely many sinks, Topology, Volume 13 (1974), pp. 9-18 (ISSN: 0040-9383) | MR | Zbl | DOI
The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHÉS, Volume 50 (1979), pp. 101-151 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI
A weak equivalence and topological entropy, Publ. Res. Inst. Math. Sci., Volume 16 (1980), pp. 289-298 (ISSN: 0034-5318) | MR | Zbl | DOI
A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, Volume 261 (2000), pp. 335-347 (ISSN: 0303-1179) | MR | Zbl | mathdoc-id
A global perspective for non-conservative dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005), pp. 485-507 (ISSN: 0294-1449) | MR | mathdoc-id | DOI
Open questions leading to a global perspective in dynamics, Nonlinearity, Volume 21 (2008), pp. 37-43 (ISSN: 0951-7715) | MR | Zbl | DOI
On the -stability conjecture, Publ. Math. IHÉS, Volume 66 (1988), pp. 211-215 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI
, Dynamical systems and related topics (Nagoya, 1990) (Adv. Ser. Dynam. Systems), Volume 9, World Sci. Publ., River Edge, NJ, 1991, pp. 466-472 | MR
Structural stability on two-dimensional manifolds, Topology, Volume 1 (1962), pp. 101-120 (ISSN: 0040-9383) | MR | Zbl | DOI
Sur le problème des trois corps et les équations de la dynamique, Acta Math., Volume 13 (1890), pp. 1-270 | JFM
Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math., Volume 151 (2000), pp. 961-1023 (ISSN: 0003-486X) | MR | Zbl | DOI
Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa, Volume 17 (1963), pp. 97-116 | MR | Zbl | mathdoc-id
, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63-80 | MR | Zbl | DOI
, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, New York, 1993, pp. 22-26 | MR | DOI
Topological entropies of equivalent smooth flows, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 3071-3082 (ISSN: 0002-9947) | MR | Zbl | DOI
Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., Volume 319 (1990), pp. 601-618 (ISSN: 0002-9947) | MR | Zbl | DOI
Homoclinic tangencies and dominated splittings, Nonlinearity, Volume 15 (2002), pp. 1445-1469 (ISSN: 0951-7715) | MR | Zbl | DOI
Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. (N.S.), Volume 35 (2004), pp. 419-452 (ISSN: 1678-7544) | MR | Zbl | DOI
The selecting lemma of Liao, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 159-175 (ISSN: 1078-0947) | MR | Zbl | DOI
On the stability conjecture for flows, J. Differential Equations, Volume 129 (1996), pp. 334-357 (ISSN: 0022-0396) | MR | Zbl | DOI
connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230 (ISSN: 0002-9947) | MR | Zbl | DOI
Kupka-Smale Theorem with obstacle (2005) (in Chinese)
On the finiteness of uniform sinks, J. Differential Equations, Volume 257 (2014), pp. 2102-2114 (ISSN: 0022-0396) | MR | Zbl | DOI
Cité par Sources :