Morse-Smale systems and horseshoes for three dimensional singular flows
[Systèmes Morse-Smale et fers-à-cheval pour les flots singuliers en dimension 3]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 39-112.

Voir la notice de l'article provenant de la source Numdam

We prove that every three-dimensional vector field can be C1 accumulated by Morse-Smale ones, or by ones with a transverse homoclinic intersection of some hyperbolic periodic orbit. In contrast to the case of diffeomorphisms [14], the main difficulty here is that we need to deal with singularities. We also make progress on another conjecture related to Palis in this paper.

Nous montrons que tout champ de vecteurs en dimension trois peut être accumulé en topologie C1 ou bien par un champ Morse-Smale, ou bien par un champ possédant une intersection homocline transverse associée à une orbite périodique hyperbolique. Contrairement au cas des difféomorphismes [14], la principale difficulté ici consiste à traiter les singularités. Nous progressons également en direction d'une autre conjecture de Palis.

DOI : 10.24033/asens.2351
Classification : 37C10, 37C20, 37C29, 37D15, 37D30.
Keywords: Morse-Smale system, horseshoe, vector field, singularity.
Mots-clés : Système de Morse-Smale, fer-à-cheval, champ de vecteurs, singularité.
@article{ASENS_2018__51_1_39_0,
     author = {Gan, Shaobo and Yang, Dawei},
     title = {Morse-Smale systems and horseshoes  for three dimensional singular flows},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {39--112},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {1},
     year = {2018},
     doi = {10.24033/asens.2351},
     mrnumber = {3764038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2351/}
}
TY  - JOUR
AU  - Gan, Shaobo
AU  - Yang, Dawei
TI  - Morse-Smale systems and horseshoes  for three dimensional singular flows
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 39
EP  - 112
VL  - 51
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2351/
DO  - 10.24033/asens.2351
LA  - en
ID  - ASENS_2018__51_1_39_0
ER  - 
%0 Journal Article
%A Gan, Shaobo
%A Yang, Dawei
%T Morse-Smale systems and horseshoes  for three dimensional singular flows
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 39-112
%V 51
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2351/
%R 10.24033/asens.2351
%G en
%F ASENS_2018__51_1_39_0
Gan, Shaobo; Yang, Dawei. Morse-Smale systems and horseshoes  for three dimensional singular flows. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 39-112. doi : 10.24033/asens.2351. http://geodesic.mathdoc.fr/articles/10.24033/asens.2351/

Afraĭmovič, V. S.; Bykov, V. V.; Sil'nikov, L. P. The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR, Volume 234 (1977), pp. 336-339 (ISSN: 0002-3264) | MR | Zbl

Anosov, D. V., Mathematical events of the twentieth century, Springer, Berlin, 2006, pp. 1-17 | MR | Zbl

Arroyo, A.; Rodriguez Hertz, F. Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003), pp. 805-841 (ISSN: 0294-1449) | MR | Zbl | mathdoc-id | DOI

Arnaud, M.-C. Création de connexions en topologie C1 , Ergodic Theory Dynam. Systems, Volume 21 (2001), pp. 339-381 (ISSN: 0143-3857) | MR | Zbl | DOI

Bonatti, C.; Crovisier, S. Récurrence et généricité, Invent. math., Volume 158 (2004), pp. 33-104 (ISSN: 0020-9910) | MR | Zbl | DOI

Bonatti, C.; Díaz, L. J.; Pujals, E. R. A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., Volume 158 (2003), pp. 355-418 (ISSN: 0003-486X) | MR | Zbl | DOI

Bonatti, C.; Díaz, L. J.; Viana, M., Encyclopaedia of Math. Sciences, 102, Springer, Berlin, 2005, 384 pages (ISBN: 3-540-22066-6) | MR | Zbl

Bonatti, C.; Gourmelon, N.; Vivier, T. Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 1307-1337 (ISSN: 0143-3857) | MR | Zbl | DOI

Bonatti, C.; Gan, S.; Wen, L. On the existence of non-trivial homoclinic classes, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 1473-1508 (ISSN: 0143-3857) | MR | Zbl | DOI

Bonatti, C.; Gan, S.; Yang, D. Dominated chain recurrent class with singularities, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 14 (2015), pp. 83-99 (ISSN: 0391-173X) | MR

Birkhoff, G. D. Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Nov. Lyncaei, Volume 53 (1935), pp. 85-216 | Zbl | JFM

Conley, C., CBMS Regional Conference Series in Mathematics, 38, Amer. Math. Soc., Providence, R.I., 1978, 89 pages (ISBN: 0-8218-1688-8) | MR | Zbl

Crovisier, S. Periodic orbits and chain-transitive sets of C1-diffeomorphisms, Publ. Math. IHÉS, Volume 104 (2006), pp. 87-141 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Crovisier, S. Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems, Ann. of Math., Volume 172 (2010), pp. 1641-1677 (ISSN: 0003-486X) | MR | Zbl | DOI

Crovisier, S.; Sambarino, M.; Yang, D. Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 1-49 (ISSN: 1435-9855) | MR | DOI

Franks, J. Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., Volume 158 (1971), pp. 301-308 (ISSN: 0002-9947) | MR | Zbl | DOI

Guckenheimer, J. A strange, strange attractor, The Hopf bifurcation theorems and its applications (Applied Mathematical Series), Volume 19 (1976), pp. 368-381 | DOI

Guckenheimer, J.; Williams, R. F. Structural stability of Lorenz attractors, Publ. Math. IHÉS, Volume 50 (1979), pp. 59-72 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Hayashi, S. Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. of Math., Volume 145 (1997), pp. 81-137 (ISSN: 0003-486X) | MR | Zbl | DOI

Hirsch, M. W.; Pugh, C. C.; Shub, M., Lecture Notes in Math., 583, Springer, Berlin-New York, 1977, 149 pages | MR | Zbl

Kupka, I. Contribution à la théorie des champs génériques, Contributions to Differential Equations, Volume 2 (1963), pp. 457-484 | MR | Zbl

Kupka, I. Addendum et corrections au mémoire: “Contributions à la théorie des champs génériques”, Contributions to Differential Equations, Volume 3 (1964), pp. 411-420 | MR | Zbl

Li, M.; Gan, S.; Wen, L. Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 239-269 (ISSN: 1078-0947) | MR | Zbl | DOI

Liao, S. T. A basic property of a certain class of differential systems, Acta Math. Sinica, Volume 22 (1979), pp. 316-343 (ISSN: 0583-1431) | MR | Zbl

Liao, S. T. On the stability conjecture, Chinese Ann. Math., Volume 1 (1980), pp. 9-30 | MR | Zbl

Liao, S. T. Obstruction sets. II, Beijing Daxue Xuebao, Volume 2 (1981), pp. 1-36 | MR

Liao, S. T. Some uniformity properties of ordinary differential systems and a generalization of an existence theorem for periodic orbits, Beijing Daxue Xuebao, Volume 2 (1985), pp. 1-19 (ISSN: 0479-8023) | MR

Liao, S. T. On (η,d)-contractible orbits of vector fields, Systems Sci. Math. Sci., Volume 2 (1989), pp. 193-227 (ISSN: 1000-9590) | MR | Zbl

Lorenz, E. N. Deterministic nonperiodic flow, J. Atmosph. Sci., Volume 20 (1963), pp. 130-141 | MR | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

Mañé, R. An ergodic closing lemma, Ann. of Math., Volume 116 (1982), pp. 503-540 (ISSN: 0003-486X) | MR | Zbl | DOI

Morales, C. A.; Pacifico, M. J. A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 1575-1600 (ISSN: 0143-3857) | MR | Zbl | DOI

Morales, C. A.; Pacífico, M. J.; Pujals, E. R. On C1 robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998), pp. 81-86 (ISSN: 0764-4442) | MR | Zbl

Morales, C. A.; Pacifico, M. J.; Pujals, E. R. Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math., Volume 160 (2004), pp. 375-432 (ISSN: 0003-486X) | MR | Zbl | DOI

Newhouse, S. E., Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 191-202 | MR | Zbl

Newhouse, S. E. Diffeomorphisms with infinitely many sinks, Topology, Volume 13 (1974), pp. 9-18 (ISSN: 0040-9383) | MR | Zbl | DOI

Newhouse, S. E. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHÉS, Volume 50 (1979), pp. 101-151 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Ohno, T. A weak equivalence and topological entropy, Publ. Res. Inst. Math. Sci., Volume 16 (1980), pp. 289-298 (ISSN: 0034-5318) | MR | Zbl | DOI

Palis, J. A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, Volume 261 (2000), pp. 335-347 (ISSN: 0303-1179) | MR | Zbl | mathdoc-id

Palis, J. A global perspective for non-conservative dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005), pp. 485-507 (ISSN: 0294-1449) | MR | mathdoc-id | DOI

Palis, J. Open questions leading to a global perspective in dynamics, Nonlinearity, Volume 21 (2008), pp. 37-43 (ISSN: 0951-7715) | MR | Zbl | DOI

Palis, J. On the C1 Ω-stability conjecture, Publ. Math. IHÉS, Volume 66 (1988), pp. 211-215 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Palis, J., Dynamical systems and related topics (Nagoya, 1990) (Adv. Ser. Dynam. Systems), Volume 9, World Sci. Publ., River Edge, NJ, 1991, pp. 466-472 | MR

Peixoto, M. M. Structural stability on two-dimensional manifolds, Topology, Volume 1 (1962), pp. 101-120 (ISSN: 0040-9383) | MR | Zbl | DOI

Poincaré, H. Sur le problème des trois corps et les équations de la dynamique, Acta Math., Volume 13 (1890), pp. 1-270 | JFM

Pujals, E. R.; Sambarino, M. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math., Volume 151 (2000), pp. 961-1023 (ISSN: 0003-486X) | MR | Zbl | DOI

Smale, S. Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa, Volume 17 (1963), pp. 97-116 | MR | Zbl | mathdoc-id

Smale, S., Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63-80 | MR | Zbl | DOI

Smale, S., From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, New York, 1993, pp. 22-26 | MR | DOI

Sun, W.; Young, T.; Zhou, Y. Topological entropies of equivalent smooth flows, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 3071-3082 (ISSN: 0002-9947) | MR | Zbl | DOI

Thomas, R. F. Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., Volume 319 (1990), pp. 601-618 (ISSN: 0002-9947) | MR | Zbl | DOI

Wen, L. Homoclinic tangencies and dominated splittings, Nonlinearity, Volume 15 (2002), pp. 1445-1469 (ISSN: 0951-7715) | MR | Zbl | DOI

Wen, L. Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. (N.S.), Volume 35 (2004), pp. 419-452 (ISSN: 1678-7544) | MR | Zbl | DOI

Wen, L. The selecting lemma of Liao, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 159-175 (ISSN: 1078-0947) | MR | Zbl | DOI

Wen, L. On the C1 stability conjecture for flows, J. Differential Equations, Volume 129 (1996), pp. 334-357 (ISSN: 0022-0396) | MR | Zbl | DOI

Wen, L.; Xia, Z. C1 connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230 (ISSN: 0002-9947) | MR | Zbl | DOI

Xi, R. Kupka-Smale Theorem with obstacle (2005) (in Chinese)

Yang, D.; Zhang, Y. On the finiteness of uniform sinks, J. Differential Equations, Volume 257 (2014), pp. 2102-2114 (ISSN: 0022-0396) | MR | Zbl | DOI

Cité par Sources :