Voir la notice de l'article provenant de la source Numdam
For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in . In particular, any global in positive times solution is bounded in positive times. The result applies to standard energy subcritical focusing nonlinearities , as well as to any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems).
Nous démontrons que toute solution radiale d'énergie finie d'une classe générale d'équations de Klein-Gordon amorties ou bien explose en temps positif fini ou bien converge en temps positif vers une solution stationnaire dans . En particulier, toute solution globale en temps positif est bornée en temps positif. Ce résultat s'applique aux non-linéarités focalisantes, sous-critiques pour l'énergie, , , comme à toute non-linéarité, sous-critique pour l'énergie, remplissant une condition de signe de type Ambrosetti-Rabinowitz. La preuve fait appel, à la fois, à des techniques propres aux équations non linéaires dispersives et à des arguments de systèmes dynamiques (variétés invariantes dans des espaces de Banach et théorèmes de convergence).
@article{ASENS_2017__50_6_1447_0, author = {Burq, Nicolas and Raugel, Genevi\`eve and Schlag, Wilhelm}, title = {Long time dynamics for damped {Klein-Gordon} equations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1447--1498}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {6}, year = {2017}, doi = {10.24033/asens.2349}, mrnumber = {3742197}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2349/} }
TY - JOUR AU - Burq, Nicolas AU - Raugel, Geneviève AU - Schlag, Wilhelm TI - Long time dynamics for damped Klein-Gordon equations JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 1447 EP - 1498 VL - 50 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2349/ DO - 10.24033/asens.2349 LA - en ID - ASENS_2017__50_6_1447_0 ER -
%0 Journal Article %A Burq, Nicolas %A Raugel, Geneviève %A Schlag, Wilhelm %T Long time dynamics for damped Klein-Gordon equations %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 1447-1498 %V 50 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2349/ %R 10.24033/asens.2349 %G en %F ASENS_2017__50_6_1447_0
Burq, Nicolas; Raugel, Geneviève; Schlag, Wilhelm. Long time dynamics for damped Klein-Gordon equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 6, pp. 1447-1498. doi : 10.24033/asens.2349. http://geodesic.mathdoc.fr/articles/10.24033/asens.2349/
, Lecture Notes in Math., 1058, Springer, 1984, 142 pages (ISBN: 3-540-13329-1) | MR | Zbl | DOI
Smooth conjugacy of centre manifolds, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (1992), pp. 61-77 (ISSN: 0308-2105) | MR | Zbl | DOI
, Dynamics reported, Vol. 2 (Dynam. Report. Ser. Dynam. Systems Appl.), Volume 2, Wiley, 1989, pp. 1-38 | MR | Zbl | DOI
Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-345 (ISSN: 0003-9527) | MR | Zbl | DOI
Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 347-375 (ISSN: 0003-9527) | MR | Zbl | DOI
On the local structure of -limit sets of maps, Z. Angew. Math. Phys., Volume 48 (1997), pp. 976-986 (ISSN: 0044-2275) | MR | Zbl | DOI
Long time dynamics for damped Klein-Gordon equations II (preprint) | MR
, Applied Mathematical Sciences, 35, Springer, 1981, 142 pages (ISBN: 0-387-90577-4) | MR | Zbl
Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Funct. Anal., Volume 60 (1985), pp. 36-55 (ISSN: 0022-1236) | MR | Zbl | DOI
On the uniqueness of sign changing bound state solutions of a semilinear equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011), pp. 599-621 (ISSN: 0294-1449) | MR | Zbl | mathdoc-id | DOI
, Grundl. math. Wiss., 251, Springer, 1982, 515 pages (ISBN: 0-387-90664-9) | MR | Zbl
Invariant foliations for semigroups in Banach spaces, J. Differential Equations, Volume 139 (1997), pp. 283-318 (ISSN: 0022-0396) | MR | Zbl | DOI
Uniqueness of the ground state solutions of in , Comm. Partial Differential Equations, Volume 16 (1991), pp. 1549-1572 (ISSN: 0360-5302) | MR | Zbl | DOI
Smooth invariant foliations in infinite-dimensional spaces, J. Differential Equations, Volume 94 (1991), pp. 266-291 (ISSN: 0022-0396) | MR | Zbl | DOI
Uniqueness of the ground state solution for and a variational characterization of other solutions, Arch. Rational Mech. Anal., Volume 46 (1972), pp. 81-95 (ISSN: 0003-9527) | MR | Zbl | DOI
Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., Volume 1 (2013), pp. 75-144 (ISSN: 2168-0930) | MR | Zbl | DOI
Convergence to an equilibrium for semilinear wave equations on unbounded intervals, Dynam. Systems Appl., Volume 3 (1994), pp. 423-434 (ISSN: 1056-2176) | MR | Zbl
Finite energy travelling waves for nonlinear damped wave equations, Quart. Appl. Math., Volume 56 (1998), pp. 55-70 (ISSN: 0033-569X) | MR | Zbl | DOI
, Lecture Notes in Math., 840, Springer, 1981, 348 pages (ISBN: 3-540-10557-3) | MR | Zbl
On the convergence of global and bounded solutions of some evolution equations, J. Evol. Equ., Volume 7 (2007), pp. 449-470 (ISSN: 1424-3199) | MR | Zbl | DOI
Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, Volume 9 (1999), pp. 95-124 (ISSN: 0944-2669) | MR | Zbl | DOI
, Dynamical systems, II (Gainesville, Fla., 1981), Academic Press, New York, 1982, pp. 85-101 | MR | Zbl
, Lecture Notes in Math., 583, Springer, 1977, 149 pages | MR | Zbl
Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys., Volume 43 (1992), pp. 63-124 (ISSN: 0044-2275) | MR | Zbl | DOI
Agmon-Kato-Kuroda theorems for a large class of perturbations, Duke Math. J., Volume 131 (2006), pp. 397-440 (ISSN: 0012-7094) | MR | Zbl | DOI
Large-time asymptotic behavior of solutions of nonlinear wave equations perturbed from a stationary ground state, Comm. Partial Differential Equations, Volume 8 (1983), pp. 1073-1099 (ISSN: 0360-5302) | MR | Zbl | DOI
Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI
Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., Volume 18 (1978), pp. 221-227 (ISSN: 0023-608X) | MR | Zbl | DOI
Uniqueness of positive radial solutions of in . II, Trans. Amer. Math. Soc., Volume 339 (1993), pp. 495-505 (ISSN: 0002-9947) | MR | Zbl | DOI
, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2011, 253 pages (ISBN: 978-3-03719-095-1) | MR | Zbl | DOI
, Springer, 1982, 198 pages (ISBN: 0-387-90668-1) |Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., Volume 22 (1975), pp. 273-303 (ISSN: 0021-2172) | MR | Zbl | DOI
, Dynamical systems (Montecatini Terme, 1994) (Lecture Notes in Math.), Volume 1609, Springer, 1995, pp. 208-315 | MR | Zbl | DOI
, Lectures in Mathematics ETH Zürich, Birkhäuser, 1996, 152 pages (ISBN: 3-7643-5397-X) | MR | Zbl | DOI
Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55 (1977), pp. 149-162 http://projecteuclid.org/euclid.cmp/1103900983 (ISSN: 0010-3616) | MR | Zbl | DOI
Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differencialnye Uravnenija, Volume 4 (1968), pp. 34-45 ; English transl. Diff. Equations 4 (1968), 17–22 (ISSN: 0374-0641) | MR
Cité par Sources :