Long time dynamics for damped Klein-Gordon equations
[Dynamique en temps grand des solutions de l'équation de Klein-Gordon amortie]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 6, pp. 1447-1498.

Voir la notice de l'article provenant de la source Numdam

For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in H1×L2. In particular, any global in positive times solution is bounded in positive times. The result applies to standard energy subcritical focusing nonlinearities |u|p-1u, 1<p<(d+2)/(d-2) as well as to any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems).

Nous démontrons que toute solution radiale d'énergie finie d'une classe générale d'équations de Klein-Gordon amorties ou bien explose en temps positif fini ou bien converge en temps positif vers une solution stationnaire dans H1×L2. En particulier, toute solution globale en temps positif est bornée en temps positif. Ce résultat s'applique aux non-linéarités focalisantes, sous-critiques pour l'énergie, |u|p-1u, 1<p<(d+2)/(d-2), comme à toute non-linéarité, sous-critique pour l'énergie, remplissant une condition de signe de type Ambrosetti-Rabinowitz. La preuve fait appel, à la fois, à des techniques propres aux équations non linéaires dispersives et à des arguments de systèmes dynamiques (variétés invariantes dans des espaces de Banach et théorèmes de convergence).

DOI : 10.24033/asens.2349
Classification : 35B.., 35B40, 35L05, 35L71, 37L10, 37L50, 37L45.
Keywords: Klein-Gordon equation with dissipation, subcritical focusing nonlinearity, radial solutions, convergence, invariant manifolds, center manifolds, Ambrosetti-Rabinowitz condition, Strichartz estimates.
Mots-clés : Équation de Klein-Gordon amortie, non-linéarité sous-critique focalisante, solutions radiales, convergence, variétés invariantes, variétés centrales, condition d'Ambrosetti-Rabinowitz, estimations de Strichartz.
@article{ASENS_2017__50_6_1447_0,
     author = {Burq, Nicolas and Raugel, Genevi\`eve and Schlag, Wilhelm},
     title = {Long time dynamics for damped {Klein-Gordon} equations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1447--1498},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {6},
     year = {2017},
     doi = {10.24033/asens.2349},
     mrnumber = {3742197},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2349/}
}
TY  - JOUR
AU  - Burq, Nicolas
AU  - Raugel, Geneviève
AU  - Schlag, Wilhelm
TI  - Long time dynamics for damped Klein-Gordon equations
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 1447
EP  - 1498
VL  - 50
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2349/
DO  - 10.24033/asens.2349
LA  - en
ID  - ASENS_2017__50_6_1447_0
ER  - 
%0 Journal Article
%A Burq, Nicolas
%A Raugel, Geneviève
%A Schlag, Wilhelm
%T Long time dynamics for damped Klein-Gordon equations
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 1447-1498
%V 50
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2349/
%R 10.24033/asens.2349
%G en
%F ASENS_2017__50_6_1447_0
Burq, Nicolas; Raugel, Geneviève; Schlag, Wilhelm. Long time dynamics for damped Klein-Gordon equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 6, pp. 1447-1498. doi : 10.24033/asens.2349. http://geodesic.mathdoc.fr/articles/10.24033/asens.2349/

Aulbach, B., Lecture Notes in Math., 1058, Springer, 1984, 142 pages (ISBN: 3-540-13329-1) | MR | Zbl | DOI

Burchard, A.; Deng, B.; Lu, K. Smooth conjugacy of centre manifolds, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (1992), pp. 61-77 (ISSN: 0308-2105) | MR | Zbl | DOI

Bates, P. W.; Jones, C. K. R. T., Dynamics reported, Vol. 2 (Dynam. Report. Ser. Dynam. Systems Appl.), Volume 2, Wiley, 1989, pp. 1-38 | MR | Zbl | DOI

Berestycki, H.; Lions, P.-L. Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-345 (ISSN: 0003-9527) | MR | Zbl | DOI

Berestycki, H.; Lions, P.-L. Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 347-375 (ISSN: 0003-9527) | MR | Zbl | DOI

Brunovský, P.; Poláčik, P. On the local structure of ω-limit sets of maps, Z. Angew. Math. Phys., Volume 48 (1997), pp. 976-986 (ISSN: 0044-2275) | MR | Zbl | DOI

Burq, N.; Raugel, G.; Schlag, W. Long time dynamics for damped Klein-Gordon equations II (preprint) | MR

Carr, J., Applied Mathematical Sciences, 35, Springer, 1981, 142 pages (ISBN: 0-387-90577-4) | MR | Zbl

Cazenave, T. Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Funct. Anal., Volume 60 (1985), pp. 36-55 (ISSN: 0022-1236) | MR | Zbl | DOI

Cortázar, C.; García-Huidobro, M.; Yarur, C. S. On the uniqueness of sign changing bound state solutions of a semilinear equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011), pp. 599-621 (ISSN: 0294-1449) | MR | Zbl | mathdoc-id | DOI

Chow, S. N.; Hale, J. K., Grundl. math. Wiss., 251, Springer, 1982, 515 pages (ISBN: 0-387-90664-9) | MR | Zbl

Chen, X.-Y.; Hale, J. K.; Tan, B. Invariant foliations for C1 semigroups in Banach spaces, J. Differential Equations, Volume 139 (1997), pp. 283-318 (ISSN: 0022-0396) | MR | Zbl | DOI

Chen, C. C.; Lin, C. S. Uniqueness of the ground state solutions of Δu+f(u)=0 in 𝐑n,n3 , Comm. Partial Differential Equations, Volume 16 (1991), pp. 1549-1572 (ISSN: 0360-5302) | MR | Zbl | DOI

Chow, S.-N.; Lin, X.-B.; Lu, K. Smooth invariant foliations in infinite-dimensional spaces, J. Differential Equations, Volume 94 (1991), pp. 266-291 (ISSN: 0022-0396) | MR | Zbl | DOI

Coffman, C. V. Uniqueness of the ground state solution for Δu-u+u3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal., Volume 46 (1972), pp. 81-95 (ISSN: 0003-9527) | MR | Zbl | DOI

Duyckaerts, T.; Kenig, C.; Merle, F. Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., Volume 1 (2013), pp. 75-144 (ISSN: 2168-0930) | MR | Zbl | DOI

Feireisl, E. Convergence to an equilibrium for semilinear wave equations on unbounded intervals, Dynam. Systems Appl., Volume 3 (1994), pp. 423-434 (ISSN: 1056-2176) | MR | Zbl

Feireisl, E. Finite energy travelling waves for nonlinear damped wave equations, Quart. Appl. Math., Volume 56 (1998), pp. 55-70 (ISSN: 0033-569X) | MR | Zbl | DOI

Henry, D., Lecture Notes in Math., 840, Springer, 1981, 348 pages (ISBN: 3-540-10557-3) | MR | Zbl

Haraux, A.; Jendoubi, M. A. On the convergence of global and bounded solutions of some evolution equations, J. Evol. Equ., Volume 7 (2007), pp. 449-470 (ISSN: 1424-3199) | MR | Zbl | DOI

Haraux, A.; Jendoubi, M. A. Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, Volume 9 (1999), pp. 95-124 (ISSN: 0944-2669) | MR | Zbl | DOI

Hale, J. K.; Massatt, P., Dynamical systems, II (Gainesville, Fla., 1981), Academic Press, New York, 1982, pp. 85-101 | MR | Zbl

Hirsch, M. W.; Pugh, C. C.; Shub, M., Lecture Notes in Math., 583, Springer, 1977, 149 pages | MR | Zbl

Hale, J. K.; Raugel, G. Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys., Volume 43 (1992), pp. 63-124 (ISSN: 0044-2275) | MR | Zbl | DOI

Ionescu, A. D.; Schlag, W. Agmon-Kato-Kuroda theorems for a large class of perturbations, Duke Math. J., Volume 131 (2006), pp. 397-440 (ISSN: 0012-7094) | MR | Zbl | DOI

Keller, C. Large-time asymptotic behavior of solutions of nonlinear wave equations perturbed from a stationary ground state, Comm. Partial Differential Equations, Volume 8 (1983), pp. 1073-1099 (ISSN: 0360-5302) | MR | Zbl | DOI

Keel, M.; Tao, T. Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980 http://muse.jhu.edu/... (ISSN: 0002-9327) | MR | Zbl | DOI

Matano, H. Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ., Volume 18 (1978), pp. 221-227 (ISSN: 0023-608X) | MR | Zbl | DOI

McLeod, K. Uniqueness of positive radial solutions of Δu+f(u)=0 in 𝐑n. II, Trans. Amer. Math. Soc., Volume 339 (1993), pp. 495-505 (ISSN: 0002-9947) | MR | Zbl | DOI

Nakanishi, K.; Schlag, W., Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2011, 253 pages (ISBN: 978-3-03719-095-1) | MR | Zbl | DOI

Palis, J. J.; de Melo, W., Springer, 1982, 198 pages (ISBN: 0-387-90668-1) | MR | Zbl

Payne, L. E.; Sattinger, D. H. Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., Volume 22 (1975), pp. 273-303 (ISSN: 0021-2172) | MR | Zbl | DOI

Raugel, G., Dynamical systems (Montecatini Terme, 1994) (Lecture Notes in Math.), Volume 1609, Springer, 1995, pp. 208-315 | MR | Zbl | DOI

Simon, L., Lectures in Mathematics ETH Zürich, Birkhäuser, 1996, 152 pages (ISBN: 3-7643-5397-X) | MR | Zbl | DOI

Strauss, W. A. Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55 (1977), pp. 149-162 http://projecteuclid.org/euclid.cmp/1103900983 (ISSN: 0010-3616) | MR | Zbl | DOI

Zelenjak, T. I. Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differencial ' nye Uravnenija, Volume 4 (1968), pp. 34-45 ; English transl. Diff. Equations 4 (1968), 17–22 (ISSN: 0374-0641) | MR

Cité par Sources :