The classification of polynomial basins of infinity
[Classification des bassins polynomiaux de l'infini]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 799-877.

Voir la notice de l'article provenant de la source Numdam

We consider the problem of classifying the dynamics of complex polynomials f: restricted to the basins of infinity X(f). We synthesize existing combinatorial tools—tableaux, trees, and laminations—into a new invariant of basin dynamics we call the pictograph. For polynomials with all critical points escaping to infinity, we obtain a complete description of the set of topological conjugacy classes with given pictograph. For arbitrary polynomials, we compute the total number of topological conjugacy classes of basins (f,X(f)) with a given pictograph. We also define abstract pictographs and prove that every abstract pictograph is realized by a polynomial. Extra details are given in degree 3, and we provide examples that show the pictograph is a finer invariant than both the tableau of [5] and the tree of [10].

Nous étudions la question de la classification de la dynamique des polynômes complexes f: restreints à leur bassin de l'infini. Nous faisons la synthèse d'outils de combinatoire — tableaux, arbres, laminations — en un nouvel invariant du bassin dynamique que nous appelons pictogramme. Pour les polynômes dont tous les points critiques s'échappent vers l'infini, nous obtenons une description complète de l'ensemble des classes de conjugaison topologiques ayant un pictogramme donné. Plus généralement, pour tout polynôme, nous calculons le nombre de classes de conjugaison topologiques du bassin (f,X(f)) à pictogramme donné. Nous définissons les pictogrammes de façon abstraite et prouvons que chacun d'eux est réalisable par un polynôme. Nous donnons plus de détails en degré 3 et donnons des exemples montrant que le pictogramme est un invariant plus fin que les tableaux de [5] et que les arbres de [10].

Publié le :
DOI : 10.24033/asens.2333
Classification : 37F10, 37F20.
Keywords: Complex dynamics, polynomial dynamics, basin of infinity, moduli space of polynomials, pictograph, tree.
Mots-clés : Dynamique holomorphe, dynamiques polynômes, bassin d'infini, espace de modules de polynômes, pictogramme, arbre.
@article{ASENS_2017__50_4_799_0,
     author = {DeMarco, Laura and Pilgrim, Kevin},
     title = {The classification  of polynomial basins of infinity},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {799--877},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {4},
     year = {2017},
     doi = {10.24033/asens.2333},
     mrnumber = {3679615},
     zbl = {1384.37052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2333/}
}
TY  - JOUR
AU  - DeMarco, Laura
AU  - Pilgrim, Kevin
TI  - The classification  of polynomial basins of infinity
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 799
EP  - 877
VL  - 50
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2333/
DO  - 10.24033/asens.2333
LA  - en
ID  - ASENS_2017__50_4_799_0
ER  - 
%0 Journal Article
%A DeMarco, Laura
%A Pilgrim, Kevin
%T The classification  of polynomial basins of infinity
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 799-877
%V 50
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2333/
%R 10.24033/asens.2333
%G en
%F ASENS_2017__50_4_799_0
DeMarco, Laura; Pilgrim, Kevin. The classification  of polynomial basins of infinity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 799-877. doi : 10.24033/asens.2333. http://geodesic.mathdoc.fr/articles/10.24033/asens.2333/

Ahlfors, L. V.; Sario, L., Princeton Mathematical Series, No. 26, Princeton Univ. Press, Princeton, N.J., 1960, 382 pages | MR | Zbl

Blanchard, P.; Devaney, R. L.; Keen, L. The dynamics of complex polynomials and automorphisms of the shift, Invent. math., Volume 104 (1991), pp. 545-580 (ISSN: 0020-9910) | MR | Zbl | DOI

Branner, B.; Hubbard, J. H. The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math., Volume 160 (1988), pp. 143-206 (ISSN: 0001-5962) | MR | Zbl | DOI

Branner, B.; Hubbard, J. H. The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math., Volume 169 (1992), pp. 229-325 (ISSN: 0001-5962) | MR | Zbl | DOI

Branner, B., Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, pp. 391-427 | MR | Zbl

Douady, A.; Hubbard, J. H. On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., Volume 18 (1985), pp. 287-343 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

DeMarco, L. G.; McMullen, C. T. Trees and the dynamics of polynomials, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008), pp. 337-382 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

De Marco, L.; Schiff, A. The geometry of the critically periodic curves in the space of cubic polynomials, Exp. Math., Volume 22 (2013), pp. 99-111 (ISSN: 1058-6458) | MR | Zbl | DOI

DeMarco, L.; Pilgrim, K. M. Polynomial basins of infinity, Geom. Funct. Anal., Volume 21 (2011), pp. 920-950 (ISSN: 1016-443X) | MR | Zbl | DOI

DeMarco, L.; Pilgrim, K. Critical heights on the moduli space of polynomials, Adv. Math., Volume 226 (2011), pp. 350-372 (ISSN: 0001-8708) | MR | Zbl | DOI

DeMarco, L.; Schiff, A. Enumerating the basins of infinity of cubic polynomials, J. Difference Equ. Appl., Volume 16 (2010), pp. 451-461 (ISSN: 1023-6198) | MR | Zbl | DOI

Harris, D. M. Turning curves for critically recurrent cubic polynomials, Nonlinearity, Volume 12 (1999), pp. 411-418 (ISSN: 0951-7715) | MR | Zbl | DOI

Hocking, J. G.; Young, G. S., Dover Publications, Inc., New York, 1988, 374 pages (ISBN: 0-486-65676-4) | MR | Zbl

Inou, H. Combinatorics and topology of straightening maps II: Discontinuity (preprint arXiv:0903.4289 )

Kiwi, J. eal laminations and the topological dynamics of complex polynomials, Adv. Math., Volume 184 (2004), pp. 207-267 (ISSN: 0001-8708) | MR | Zbl | DOI

Kiwi, J. Combinatorial continuity in complex polynomial dynamics, Proc. London Math. Soc., Volume 91 (2005), pp. 215-248 (ISSN: 0024-6115) | MR | Zbl | DOI

Kozlovski, O.; van Strien, S. Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc., Volume 99 (2009), pp. 275-296 (ISSN: 0024-6115) | MR | Zbl | DOI

McMullen, C. T., Annals of Math. Studies, 135, Princeton Univ. Press, Princeton, NJ, 1994, 214 pages (ISBN: 0-691-02982-2; 0-691-02981-4) | MR | Zbl

Milnor, J., The Mandelbrot set, theme and variations (London Math. Soc. Lecture Note Ser.), Volume 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67-116 | MR | Zbl | DOI

Milnor, J., Annals of Math. Studies, 160, Princeton Univ. Press, Princeton, NJ, 2006, 304 pages (ISBN: 978-0-691-12488-9; 0-691-12488-4) | MR | Zbl

Milnor, J., Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 333-411 | MR | Zbl | DOI

McMullen, C. T.; Sullivan, D. P. Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math., Volume 135 (1998), pp. 351-395 (ISSN: 0001-8708) | MR | Zbl | DOI

Pérez, R. A. Quadratic polynomials and combinatorics of the principal nest, Indiana Univ. Math. J., Volume 54 (2005), pp. 1661-1695 (ISSN: 0022-2518) | MR | Zbl | DOI

Qiu, W.; Yin, Y. Proof of the Branner-Hubbard conjecture on Cantor Julia sets, Sci. China Ser. A, Volume 52 (2009), pp. 45-65 (ISSN: 1006-9283) | MR | Zbl | DOI

Thurston, W. P., Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 3-137 | MR | Zbl | DOI

Yin, Y.; Zhai, Y. No invariant line fields on Cantor Julia sets, Forum Math., Volume 22 (2010), pp. 75-94 (ISSN: 0933-7741) | MR | Zbl | DOI

Cité par Sources :