Voir la notice de l'article provenant de la source Numdam
In 1978 Durfee conjectured various inequalities between the signature and the geometric genus of a normal surface singularity. Since then a few counter examples have been found and positive results established in some special cases.
We prove a `strong' Durfee-type inequality for any smoothing of a Gorenstein singularity, provided that the intersection form of the resolution is unimodular. We also prove the conjectured `weak' inequality for all hypersurface singularities and for sufficiently large multiplicity strict complete intersections. The proofs establish general inequalities valid for any numerically Gorenstein normal surface singularity.
En 1978 Durfee a conjecturé plusieurs inégalités entre la signature et le genre géométrique d'une singularité normale de surface. Depuis, quelques contre-exemples ont été trouvés et des résultats positifs établis dans des cas particuliers.
Nous montrons ici une inégalité `forte' de type Durfee pour toute lissification d'une singularité de Gorenstein, sous la condition que la forme d'intersection de la résolution est unimodulaire. Nous prouvons aussi l'inégalité `faible' pour toute singularité d'hypersurface et pour les intersections complètes strictes de multiplicité suffisamment grande. Les preuves établissent des inégalités générales valables pour toute singularité normale et numériquement Gorenstein de surface.
@article{ASENS_2017__50_3_787_0, author = {Koll\'ar, J\'anos and N\'emethi, Andr\'as}, title = {Durfee's conjecture on the signature of smoothings of surface singularities}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {787--798}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {3}, year = {2017}, doi = {10.24033/asens.2332}, mrnumber = {3665555}, zbl = {1382.32020}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2332/} }
TY - JOUR AU - Kollár, János AU - Némethi, András TI - Durfee's conjecture on the signature of smoothings of surface singularities JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 787 EP - 798 VL - 50 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2332/ DO - 10.24033/asens.2332 LA - en ID - ASENS_2017__50_3_787_0 ER -
%0 Journal Article %A Kollár, János %A Némethi, András %T Durfee's conjecture on the signature of smoothings of surface singularities %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 787-798 %V 50 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2332/ %R 10.24033/asens.2332 %G en %F ASENS_2017__50_3_787_0
Kollár, János; Némethi, András. Durfee's conjecture on the signature of smoothings of surface singularities. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 787-798. doi : 10.24033/asens.2332. http://geodesic.mathdoc.fr/articles/10.24033/asens.2332/
Normal two-dimensional hypersurface triple points and the Horikawa type resolution, Tohoku Math. J., Volume 44 (1992), pp. 177-200 (ISSN: 0040-8735) | MR | Zbl | DOI
, “Nauka”, Moscow, 1984, 336 pages |Normally flat deformations, Trans. Amer. Math. Soc., Volume 225 (1977), pp. 1-57 (ISSN: 0002-9947) | MR | Zbl | DOI
Length, multiplicity, and multiplier ideals, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 3717-3731 (ISSN: 0002-9947) | MR | Zbl | DOI
The signature of smoothings of complex surface singularities, Math. Ann., Volume 232 (1978), pp. 85-98 (ISSN: 0025-5831) | MR | Zbl | DOI
A characterization of the lattice, Math. Res. Lett., Volume 2 (1995), pp. 321-326 (ISSN: 1073-2780) | MR | Zbl | DOI
Invarianten quasihomogener vollständiger Durchschnitte, Invent. math., Volume 49 (1978), pp. 67-86 (ISSN: 0020-9910) | MR | Zbl | DOI
Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann., Volume 214 (1975), pp. 235-266 (ISSN: 0025-5831) | MR | Zbl | DOI
Differential forms and Hodge numbers for toric complete intersections (preprint arXiv:1106.1826 )
, Journées Complexes 85 (Nancy, 1985) (Inst. Élie Cartan), Volume 10, Univ. Nancy, Nancy, 1986, pp. 6-13 | MR | Zbl
Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen., Volume 12 (1978), pp. 51-61 (ISSN: 0374-1990) | MR | Zbl
, Topology of algebraic varieties and singularities (Contemp. Math.), Volume 538, Amer. Math. Soc., Providence, RI, 2011, pp. 369-376 | MR | Zbl | DOI
A counterexample to Durfee's conjecture, C. R. Math. Rep. Acad. Sci. Canada, Volume 34 (2012), pp. 50-64 (ISSN: 0706-1994) | MR | Zbl
The `corrected Durfee's inequality' for homogeneous complete intersections, Math. Z., Volume 274 (2013), pp. 1385-1400 (ISSN: 0025-5874) | MR | Zbl | DOI
On for surface singularities, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), Amer. Math. Soc., Providence, R. I. (1977), pp. 45-49 | MR | Zbl
, London Mathematical Society Lecture Note Series, 77, Cambridge Univ. Press, Cambridge, 1984, 200 pages (ISBN: 0-521-28674-3) | MR | Zbl | DOI
Riemann-Roch and smoothings of singularities, Topology, Volume 25 (1986), pp. 293-302 (ISSN: 0040-9383) | MR | Zbl | DOI
Milnor numbers for surface singularities, Israel J. Math., Volume 115 (2000), pp. 29-50 (ISSN: 0021-2172) | MR | Zbl | DOI
, Annals of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, 122 pages | MR | Zbl
Fonctions de Hilbert, genre géométrique d'une singularité quasi homogène Cohen-Macaulay, C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985), pp. 699-702 (ISSN: 0249-6291) | MR | Zbl
Simply-connected algebraic surfaces of positive index, Invent. math., Volume 89 (1987), pp. 601-643 (ISSN: 0020-9910) | MR | Zbl | DOI
The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. IHÉS, Volume 9 (1961), pp. 5-22 (ISSN: 0073-8301) | Zbl | mathdoc-id | MR | DOI
The Seiberg-Witten invariants of negative definite plumbed 3-manifolds, J. Eur. Math. Soc. (JEMS), Volume 13 (2011), pp. 959-974 (ISSN: 1435-9855) | MR | Zbl | DOI
Dedekind sums and the signature of , Selecta Math. (N.S.), Volume 4 (1998), pp. 361-376 (ISSN: 1022-1824) | MR | Zbl | DOI
, Singularities (Oberwolfach, 1996) (Progr. Math.), Volume 162, Birkhäuser, 1998, pp. 93-102 | MR | Zbl | DOI
Dedekind sums and the signature of . II, Selecta Math. (N.S.), Volume 5 (1999), pp. 161-179 (ISSN: 1022-1824) | MR | Zbl | DOI
On the Casson invariant conjecture of Neumann-Wahl, J. Algebraic Geom., Volume 18 (2009), pp. 135-149 (ISSN: 1056-3911) | MR | Zbl | DOI
Complex surface singularities with integral homology sphere links, Geom. Topol., Volume 9 (2005), pp. 757-811 (ISSN: 1465-3060) | MR | Zbl | DOI
Casson invariant of links of singularities, Comment. Math. Helv., Volume 65 (1990), pp. 58-78 (ISSN: 0010-2571) | MR | Zbl | DOI
Chern slopes of simply connected complex surfaces of general type are dense in , Ann. of Math., Volume 182 (2015), pp. 287-306 (ISSN: 0003-486X) | MR | Zbl | DOI
, Singularities, Part 2 (Arcata, Calif., 1981) (Proc. Sympos. Pure Math.), Volume 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513-536 | MR | Zbl
The inequality for hypersurface two-dimensional isolated double points, Math. Nachr., Volume 164 (1993), pp. 37-48 (ISSN: 0025-584X) | MR | Zbl | DOI
Elliptic singularities of surfaces, Amer. J. Math., Volume 92 (1970), pp. 419-454 (ISSN: 0002-9327) | MR | Zbl | DOI
Smoothings of normal surface singularities, Topology, Volume 20 (1981), pp. 219-246 (ISSN: 0040-9383) | MR | Zbl | DOI
Durfee conjecture and coordinate free characterization of homogeneous singularities, J. Differential Geom., Volume 37 (1993), pp. 375-396 http://projecteuclid.org/euclid.jdg/1214453681 (ISSN: 0022-040X) | MR | Zbl
Cité par Sources :