Versions of injectivity and extension theorems
[Versions des théorèmes d'injectivité et d'extension]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 2, pp. 479-502.

Voir la notice de l'article provenant de la source Numdam

We give an analytic version of the injectivity theorem by using multiplier ideal sheaves of singular hermitian metrics, and prove extension theorems for the log canonical bundle of dlt pairs. Moreover we obtain partial results related to the abundance conjecture in birational geometry and the semi-ampleness conjecture for hyperKähler manifolds.

Nous donnons une version analytique du théorème d'injectivité en utilisant les idéaux multiplicateurs, et démontrons des théorèmes d'extension pour le faisceau adjoint d'une paire dlt. De plus nous obtenons des résultats de semi-amplitude liés à la conjecture d'abondance en géométrie birationnelle et la conjecture de semi-amplitude pour les variétés hyperkählériennes.

Publié le :
DOI : 10.24033/asens.2325
Classification : 14E30, 14F18, 32L10, 32L20, 32J25.
Keywords: Injectivity theorem, extension theorem, abundance conjecture.
Mots-clés : Théorème d'injectivité, théorème d'extension, conjecture d'abondance.
@article{ASENS_2017__50_2_479_0,
     author = {Gongyo, Yoshinori and ichi Matsumura, Shin},
     title = {Versions of injectivity  and extension theorems},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {479--502},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {2},
     year = {2017},
     doi = {10.24033/asens.2325},
     mrnumber = {3621435},
     zbl = {1401.14083},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2325/}
}
TY  - JOUR
AU  - Gongyo, Yoshinori
AU  - ichi Matsumura, Shin
TI  - Versions of injectivity  and extension theorems
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 479
EP  - 502
VL  - 50
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2325/
DO  - 10.24033/asens.2325
LA  - en
ID  - ASENS_2017__50_2_479_0
ER  - 
%0 Journal Article
%A Gongyo, Yoshinori
%A ichi Matsumura, Shin
%T Versions of injectivity  and extension theorems
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 479-502
%V 50
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2325/
%R 10.24033/asens.2325
%G en
%F ASENS_2017__50_2_479_0
Gongyo, Yoshinori; ichi Matsumura, Shin. Versions of injectivity  and extension theorems. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 2, pp. 479-502. doi : 10.24033/asens.2325. http://geodesic.mathdoc.fr/articles/10.24033/asens.2325/

Amerik, E.; Campana, F. Characteristic foliation on non-uniruled smooth divisors on projective hyperkaehler manifolds (preprint arXiv:1405.0539 ) | MR

Ambro, F. Quasi-log varieties, Tr. Mat. Inst. Steklova, Volume 240 (2003), pp. 220-239 (ISSN: 0371-9685) | MR | Zbl

Ambro, F. An injectivity theorem, Compos. math., Volume 150 (2014), pp. 999-1023 (ISSN: 0010-437X) | MR | Zbl | DOI

Birkar, C.; Cascini, P.; Hacon, C. D.; McKernan, J. Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010), pp. 405-468 (ISSN: 0894-0347) | MR | Zbl | DOI

Campana, F.; Oguiso, K.; Peternell, T. Non-algebraic hyperkähler manifolds, J. Differential Geom., Volume 85 (2010), pp. 397-424 http://projecteuclid.org/euclid.jdg/1292940689 (ISSN: 0022-040X) | MR | Zbl

Demailly, J.-P., Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012, 231 pages (ISBN: 978-1-57146-234-3) | MR | Zbl

Demailly, J.-P. Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409 (ISSN: 1056-3911) | MR | Zbl

Demailly, J.-P.; Hacon, C. D.; Păun, M. Extension theorems, non-vanishing and the existence of good minimal models, Acta Math., Volume 210 (2013), pp. 203-259 (ISSN: 0001-5962) | MR | Zbl | DOI

Demailly, J.-P.; Peternell, T.; Schneider, M. Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Volume 12 (2001), pp. 689-741 (ISSN: 0129-167X) | MR | Zbl | DOI

Enoki, I., Einstein metrics and Yang-Mills connections (Sanda, 1990) (Lecture Notes in Pure and Appl. Math.), Volume 145, Dekker, New York, 1993, pp. 59-68 | MR | Zbl

Esnault, H.; Viehweg, E., DMV Seminar, 20, Birkhäuser, 1992, 164 pages (ISBN: 3-7643-2822-3) | MR | Zbl | DOI

Fujino, O.; Gongyo, Y. Log pluricanonical representations and the abundance conjecture, Compos. math., Volume 150 (2014), pp. 593-620 (ISSN: 0010-437X) | MR | Zbl | DOI

Fujino, O. Introduction to the log minimal model program for log canonical pairs (preprint arXiv:0907.1506 ) | MR

Fujino, O. On semipositivity, injectivity, and vanishing theorems (preprint arXiv:1503.0650 ) | MR

Fujino, O. Abundance theorem for semi log canonical threefolds, Duke Math. J., Volume 102 (2000), pp. 513-532 (ISSN: 0012-7094) | MR | Zbl | DOI

Fujino, O., Flips for 3-folds and 4-folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 49-62 | MR | Zbl | DOI

Fujino, O. Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 727-789 (ISSN: 0034-5318) | MR | Zbl | DOI

Fujino, O. Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci., Volume 87 (2011), pp. 25-30 http://projecteuclid.org/euclid.pja/1299161391 (ISSN: 0386-2194) | MR | Zbl | DOI

Fujino, O. A transcendental approach to Kollár's injectivity theorem, Osaka J. Math., Volume 49 (2012), pp. 833-852 http://projecteuclid.org/euclid.ojm/1350306598 (ISSN: 0030-6126) | MR | Zbl

Fujino, O. Foundation of the minimal model program (2014) (preprint https://www.math.kyoto-u.ac.jp/~fujino/foundation1.pdf ) | MR

Gongyo, Y.; Lehmann, B. Reduction maps and minimal model theory, Compos. math., Volume 149 (2013), pp. 295-308 (ISSN: 0010-437X) | MR | Zbl | DOI

Gongyo, Y., Algebraic geometry in east Asia—Taipei 2011 (Adv. Stud. Pure Math.), Volume 65, Math. Soc. Japan, Tokyo, 2015, pp. 107-116 | MR | Zbl | DOI

Hacon, C. D.; McKernan, J.; Xu, C. ACC for log canonical thresholds, Ann. of Math., Volume 180 (2014), pp. 523-571 (ISSN: 0003-486X) | MR | Zbl | DOI

Hacon, C. D.; Xu, C. On Finiteness of B-representations and Semi-log Canonical Abundance (preprint arXiv:1107.4149 ) | MR

Kawamata, Y. Pluricanonical systems on minimal algebraic varieties, Invent. math., Volume 79 (1985), pp. 567-588 (ISSN: 0020-9910) | MR | Zbl | DOI

Kawamata, Y. Abundance theorem for minimal threefolds, Invent. math., Volume 108 (1992), pp. 229-246 (ISSN: 0020-9910) | MR | Zbl | DOI

Kollár, J.; Kovács, S. J. Log canonical singularities are Du Bois, J. Amer. Math. Soc., Volume 23 (2010), pp. 791-813 (ISSN: 0894-0347) | MR | Zbl | DOI

Kollár, J.; Mori, S., Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998, 254 pages (ISBN: 0-521-63277-3) | MR | Zbl | DOI

Kawamata, Y.; Matsuda, K.; Matsuki, K., Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 283-360 | MR | Zbl | DOI

Keel, S.; Matsuki, K.; McKernan, J. Log abundance theorem for threefolds, Duke Math. J., Volume 75 (1994), pp. 99-119 (ISSN: 0012-7094) | MR | Zbl | DOI

Kollár, J. Higher direct images of dualizing sheaves. I, Ann. of Math., Volume 123 (1986), pp. 11-42 (ISSN: 0003-486X) | MR | Zbl | DOI

Kollár, J. Adjunction and discrepancies, Flips and Abundance for algebraic threefolds, Astérisque, Volume 211 (1992), pp. 183-192 | Zbl

Lazić, V.; Peternell, T. Abundance for varieties with many differential forms (preprint arXiv:1601.01602 ) | MR

Matsumura, Shin-ichi. An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities (preprint arXiv:1308.2033, to appear in J. Alg. Geom ) | MR

Matsumura, Shin-ichi. A Nadel vanishing theorem via injectivity theorems, Math. Ann., Volume 359 (2014), pp. 785-802 (ISSN: 0025-5831) | MR | Zbl | DOI

Matsumura, Shin-ichi. A Nadel vanishing theorem for metrics with minimal singularities on big line bundles, Adv. Math., Volume 280 (2015), pp. 188-207 (ISSN: 0001-8708) | MR | Zbl | DOI

Matsumura, Shin-ichi., Complex analysis and geometry (Springer Proc. Math. Stat.), Volume 144, Springer, Tokyo, 2015, pp. 241-255 | MR | Zbl | DOI

Nakayama, N., MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004, 277 pages (ISBN: 4-931469-31-0) | MR | Zbl

Ohsawa, T. On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci., Volume 41 (2005), pp. 565-577 http://projecteuclid.org/euclid.prims/1145475223 (ISSN: 0034-5318) | MR | Zbl | DOI

Tankeev, S. G. n-dimensional canonically polarized varieties, and varieties of basic type, Izv. Akad. Nauk SSSR Ser. Mat., Volume 35 (1971), pp. 31-44 (ISSN: 0373-2436) | MR | Zbl

Verbitsky, M. Hyperkähler SYZ conjecture and semipositive line bundles, Geom. Funct. Anal., Volume 19 (2010), pp. 1481-1493 (ISSN: 1016-443X) | MR | Zbl | DOI

Cité par Sources :