Ecalle's arborification-coarborification transforms and Connes-Kreimer Hopf algebra
[Les transformations d'arborification-coarborification d'Ecalle et l'algèbre de Hopf de Connes-Kreimer]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 39-83.

Voir la notice de l'article provenant de la source Numdam

We give a natural and complete description of Ecalle's mould-comould formalism within a Hopf-algebraic framework. The arborification transform thus appears as a factorization of characters, involving the shuffle or quasishuffle Hopf algebras, thanks to a universal property satisfied by Connes-Kreimer Hopf algebra. We give a straightforward characterization of the fundamental process of homogeneous coarborification, using the explicit duality between decorated Connes-Kreimer and Grossman-Larson Hopf algebras. Finally, we introduce a new Hopf algebra that systematically underlies the calculations for the normalization of local dynamical systems.

Nous donnons une description complète et naturelle du formalisme d'arborification/coarborification d'Ecalle en termes d'algèbres de Hopf. L'arborification apparaît alors comme une factorisation de caractères, impliquant les algèbres shuffle ou quasishuffle, en vertu d'une propriété universelle satisfaite par l'algèbre de Connes-Kreimer. Dans ce cadre, nous obtenons de façon directe le procédé fondamental de coarborification homogène, en utilisant la dualité explicite entre les algèbres de Hopf décorées de Connes-Kreimer et Grossman-Larson. Enfin, nous introduisons une nouvelle algèbre de Hopf qui est sous-jacente aux calculs de normalisation des systèmes dynamiques locaux.

Publié le :
DOI : 10.24033/asens.2315
Classification : 05E05, 16T05, 34M35.
Keywords: Dynamical systems, normal forms, Hopf algebras, trees, Faà di Bruno, moulds, arborification, coarborification.
Mots-clés : Systèmes dynamiques, formes normales, algèbres de Hopf, arbres, Faà di Bruno, moules, arborification, coarborification.
@article{ASENS_2017__50_1_39_0,
     author = {Fauvet, Fr\'ed\'eric and Menous, Fr\'ed\'eric},
     title = {Ecalle's arborification-coarborification transforms and {Connes-Kreimer}  {Hopf} algebra},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {39--83},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {1},
     year = {2017},
     doi = {10.24033/asens.2315},
     mrnumber = {3621426},
     zbl = {1371.16043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2315/}
}
TY  - JOUR
AU  - Fauvet, Frédéric
AU  - Menous, Frédéric
TI  - Ecalle's arborification-coarborification transforms and Connes-Kreimer  Hopf algebra
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 39
EP  - 83
VL  - 50
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2315/
DO  - 10.24033/asens.2315
LA  - en
ID  - ASENS_2017__50_1_39_0
ER  - 
%0 Journal Article
%A Fauvet, Frédéric
%A Menous, Frédéric
%T Ecalle's arborification-coarborification transforms and Connes-Kreimer  Hopf algebra
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 39-83
%V 50
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2315/
%R 10.24033/asens.2315
%G en
%F ASENS_2017__50_1_39_0
Fauvet, Frédéric; Menous, Frédéric. Ecalle's arborification-coarborification transforms and Connes-Kreimer  Hopf algebra. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 1, pp. 39-83. doi : 10.24033/asens.2315. http://geodesic.mathdoc.fr/articles/10.24033/asens.2315/

Arnolʼd, V. I., Grundl. math. Wiss., 250, Springer, New York-Berlin, 1983, 334 pages (ISBN: 0-387-90681-9) | MR | Zbl

Brjuno, A. D. Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč., Volume 25 (1971), pp. 131-288 26 (1972), 199–239 (ISSN: 0134-8663) | MR | Zbl

Carletti, T. The Lagrange inversion formula on non-Archimedean fields. Non-analytical form of differential and finite difference equations, Discrete Contin. Dyn. Syst., Volume 9 (2003), pp. 835-858 (ISSN: 1078-0947) | MR | Zbl | DOI

Cariñena, J. F.; Ebrahimi-Fard, K.; Figueroa, H.; Gracia-Bondía, J. M. Hopf algebras in dynamical systems theory, Int. J. Geom. Methods Mod. Phys., Volume 4 (2007), pp. 577-646 (ISSN: 0219-8878) | MR | Zbl | DOI

Calaque, D.; Ebrahimi-Fard, K.; Manchon, D. Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math., Volume 47 (2011), pp. 282-308 (ISSN: 0196-8858) | MR | Zbl | DOI

Chapoton, F. The anticyclic operad of moulds, Int. Math. Res. Not., Volume 2007 (2007) (ISSN: 1073-7928) | MR | Zbl | DOI

Chapoton, F.; Hivert, F.; Novelli, J.-C.; Thibon, J.-Y. An operational calculus for the mould operad, Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | MR | Zbl | DOI

Connes, A.; Kreimer, D. Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., Volume 199 (1998), pp. 203-242 (ISSN: 0010-3616) | MR | Zbl | DOI

Ebrahimi-Fard, K.; Lundervold, A.; Malham, S. J. A.; Munthe-Kaas, H.; Wiese, A. Algebraic structure of stochastic expansions and efficient simulation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 468 (2012), pp. 2361-2382 (ISSN: 1364-5021) | MR | Zbl | DOI

Ebrahimi-Fard, K.; Manchon, D. The combinatorics of Bogoliubov's recursion in renormalization, Renormalization and Galois Theories (Connes, A.; Fauvet, F.; Ramis, J.-P., eds.), EMS Publ. House (2009) | MR | Zbl | DOI

Figueroa, H.; Gracia-Bondía, J. M. Combinatorial Hopf algebras in quantum field theory. I, Rev. Math. Phys., Volume 17 (2005), pp. 881-976 (ISSN: 0129-055X) | MR | Zbl | DOI

Foissy, L. Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math., Volume 126 (2002), pp. 193-239 (ISSN: 0007-4497) | MR | Zbl | DOI

Foissy, L. Les algèbres de Hopf des arbres enracinés décorés. II, Bull. Sci. Math., Volume 126 (2002), pp. 249-288 (ISSN: 0007-4497) | MR | Zbl | DOI

Foissy, L.; Unterberger, J. Ordered forests, permutations, and iterated integrals, Int. Math. Res. Not., Volume 2013 (2013), pp. 846-885 (ISSN: 1073-7928) | MR | Zbl | DOI

Galavotti, G. Exact Renormalization Group (2002) (IHP Séminaire Bourbaphy, CNRS) | MR

Grossman, R.; Larson, R. G. Hopf-algebraic structure of families of trees, J. Algebra, Volume 126 (1989), pp. 184-210 (ISSN: 0021-8693) | MR | Zbl | DOI

Grossman, R.; Larson, R. G. Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math., Volume 72 (1990), pp. 109-117 (ISSN: 0021-2172) | MR | Zbl | DOI

Hoffman, M. E., Renormalization and Galois theories (IRMA Lect. Math. Theor. Phys.), Volume 15, Eur. Math. Soc., Zürich, 2009, pp. 209-227 | MR | Zbl | DOI

Ilyashenko, Y.; Yakovenko, S., Graduate Studies in Math., 86, Amer. Math. Soc., Providence, RI, 2008, 625 pages (ISBN: 978-0-8218-3667-5) | MR | Zbl

Kreimer, D. Chen's iterated integral represents the operator product expansion, Adv. Theor. Math. Phys., Volume 3 (1999), pp. 627-670 (ISSN: 1095-0761) | MR | Zbl | DOI

Lundervold, A.; Munthe-Kaas, H. Z., Faà di Bruno Hopf algebras, Dyson-Schwinger equations, and Lie-Butcher series (IRMA Lect. Math. Theor. Phys.), Volume 21, Eur. Math. Soc., Zürich, 2015, pp. 219-263 | MR | Zbl | DOI

Manchon, D. Hopf algebras, from basics to applications to renormalization, Comptes-rendus des rencontres mathématiques de Glanon (2003)

Menous, F. An example of local analytic q-difference equation: analytic classification, Ann. Fac. Sci. Toulouse Math., Volume 15 (2006), pp. 773-814 http://afst.cedram.org/... (ISSN: 0240-2963) | MR | Zbl | mathdoc-id | DOI

Menous, F. On the stability of some groups of formal diffeomorphisms by the Birkhoff decomposition, Adv. Math., Volume 216 (2007), pp. 1-28 (ISSN: 0001-8708) | MR | Zbl | DOI

Martinet, J.; Ramis, J.-P. Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. IHÉS, Volume 55 (1982), pp. 63-164 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Murua, A. The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math., Volume 6 (2006), pp. 387-426 (ISSN: 1615-3375) | MR | Zbl | DOI

Panaite, F. Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys., Volume 51 (2000), pp. 211-219 (ISSN: 0377-9017) | MR | Zbl | DOI

Pöschel, J. On invariant manifolds of complex analytic mappings near fixed points, Exposition. Math., Volume 4 (1986), pp. 97-109 (ISSN: 0723-0869) | MR | Zbl

Rüssmann, H. On the convergence of power series transformations of analytic mappings near a fixed point into normal form (1977) (preprint IHÉS)

Zhao, W. Differential operator specializations of noncommutative symmetric functions, Adv. Math., Volume 214 (2007), pp. 639-665 (ISSN: 0001-8708) | MR | Zbl | DOI

Zhao, W. Noncommutative symmetric systems over associative algebras, J. Pure Appl. Algebra, Volume 210 (2007), pp. 363-382 (ISSN: 0022-4049) | MR | Zbl | DOI

Zhao, W. A noncommutative symmetric system over the Grossman-Larson Hopf algebra of labeled rooted trees, J. Algebraic Combin., Volume 28 (2008), pp. 235-260 (ISSN: 0925-9899) | MR | Zbl | DOI

Écalle, J. Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble), Volume 42 (1992), pp. 73-164 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Cité par Sources :