The horoboundary of outer space, and growth under random automorphisms
[L'horofrontière de l'outre-espace et la croissance sous l'action d'automorphismes aléatoires]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1075-1123.

Voir la notice de l'article provenant de la source Numdam

We show that the horoboundary of outer space for the Lipschitz metric is a quotient of Culler and Morgan's classical boundary, two trees being identified whenever their translation length functions are homothetic in restriction to the set of primitive elements of FN. We identify the set of Busemann points with the set of trees with dense orbits. We also investigate a few properties of the horoboundary of outer space for the backward Lipschitz metric, and show in particular that it is infinite-dimensional when N3. We then use our description of the horoboundary of outer space to derive an analogue of a theorem of Furstenberg and Kifer [20] and Hennion [32] for random products of outer automorphisms of FN, that estimates possible growth rates of conjugacy classes of elements of FN under such products.

Nous montrons que l'horofrontière de l'outre-espace pour la distance de Lipschitz est un quotient de la frontière classique de Culler et Morgan, dans laquelle deux arbres sont identifiés lorsque leurs fonctions-longueurs de translation sont homothétiques en restriction aux éléments primitifs de FN. Nous identifions l'ensemble des points de Busemann à l'ensemble des arbres à orbites denses. Nous étudions également quelques propriétés de l'horofrontière de l'outre-espace pour la distance de Lipschitz inversée, et montrons en particulier que celle-ci est de dimension topologique infinie dès que N3. Nous utilisons ensuite notre description de l'horofrontière de l'outre-espace pour montrer un analogue d'un théorème de Furstenberg et Kifer [20] et Hennion [32] pour les produits aléatoires d'automorphismes extérieurs de FN, estimant les taux de croissance possibles des classes de conjugaison d'éléments de FN sous l'action de tels produits.

Publié le :
DOI : 10.24033/asens.2304
Classification : 20F65, 20E08, 20E36, 60B15.
Keywords: $\mathrm {Out}(F_N)$, Outer space, horoboundary, growth, random walks.
Mots-clés : $\mathrm {Out}(F_N)$, Outre espace, horofrontière, croissance, marches aléatoires.
@article{ASENS_2016__49_5_1075_0,
     author = {Horbez, Camille},
     title = {The horoboundary of outer space, and growth under random automorphisms},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1075--1123},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {5},
     year = {2016},
     doi = {10.24033/asens.2304},
     mrnumber = {3581811},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2304/}
}
TY  - JOUR
AU  - Horbez, Camille
TI  - The horoboundary of outer space, and growth under random automorphisms
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1075
EP  - 1123
VL  - 49
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2304/
DO  - 10.24033/asens.2304
LA  - en
ID  - ASENS_2016__49_5_1075_0
ER  - 
%0 Journal Article
%A Horbez, Camille
%T The horoboundary of outer space, and growth under random automorphisms
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1075-1123
%V 49
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2304/
%R 10.24033/asens.2304
%G en
%F ASENS_2016__49_5_1075_0
Horbez, Camille. The horoboundary of outer space, and growth under random automorphisms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1075-1123. doi : 10.24033/asens.2304. http://geodesic.mathdoc.fr/articles/10.24033/asens.2304/

Algom-Kfir, Y. The Metric Completion of Outer Space (preprint arXiv:1202.6392 ) | MR

Algom-Kfir, Y. Strongly contracting geodesics in Outer Space, Geom. Topol., Volume 15 (2011), pp. 2181-2233 | MR | Zbl | DOI

Ballmann, W. On the Dirichlet problem at infinity for manifolds of nonpositive curvature, Forum Math., Volume 1 (1989), pp. 201-213 | MR | Zbl | DOI

Ballmann, W., DMV Seminars, 25, Birkhäuser, 1995 | MR | Zbl

Bestvina, M.; Feighn, M. Outer limits (1994) (preprint http://andromeda.rutgers.edu/~feighn/papers/outer.pdf )

Benoist, Y.; Quint, J.-F. Stationary measures and invariant subsets of homogeneous spaces II, J. Amer. Math. Soc., Volume 26 (2013), pp. 659-734 | MR | Zbl | DOI

Castaing, C. Sur les multi-applications mesurables, Modélisation Mathématique et Analyse Numérique, Volume 1 (1967), pp. 91-126 | MR | Zbl | mathdoc-id

Cohen, M.; Lustig, M. Very small group actions on -trees and Dehn twist automorphisms, Topology, Volume 34 (1995), pp. 575-617 | MR | Zbl | DOI

Calegari, D.; Maher, J. Statistics and compression of scl, Erg. Theo. Dyn. Syst., Volume 35 (2015), pp. 64-110 | MR | Zbl | DOI

Culler, M.; Morgan, J. Group actions on -trees, Proc. London Math. Soc., Volume 55 (1987), pp. 571-604 | MR | Zbl | DOI

Castaing, C.; Valadier, M., Lecture Notes in Math., 580, Springer, 1977 | MR | Zbl

Culler, M.; Vogtmann, K. Moduli of graphs and automorphisms of free groups, Invent. math., Volume 84 (1986), pp. 91-119 | MR | Zbl | DOI

Culler, M.; Vogtmann, K. The boundary of outer space in rank two, Arboreal group theory (Berkeley, CA, 1988) (Math. Sci. Res. Inst. Publ.), Volume 19, Springer, New York (1991), pp. 189-230 | MR | Zbl | DOI

Furstenberg, H.; Kesten, H. Products of Random Matrices, Ann. Math. Statist., Volume 31 (1960), pp. 457-469 | MR | Zbl | DOI

Furstenberg, H.; Kifer, Y. Random matrix products and measures on projective spaces, Israel J. Math., Volume 46 (1983), pp. 12-32 | MR | Zbl | DOI

Fathi, A.; Laudenbach, F.; Poenaru, V. Travaux de Thurston sur les surfaces, Astérisque, Volume 66-67 (1979) | MR | mathdoc-id

Francaviglia, S.; Martino, A. Stretching factors, metrics and train tracks for free products (preprint arXiv:1312.4172 ) | MR

Francaviglia, S.; Martino, A. Metric Properties of Outer Space, Publ. Mat., Volume 55 (2011), pp. 433-473 | MR | Zbl | DOI

Furstenberg, H. Non commuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428 | MR | Zbl | DOI

Furstenberg, H., Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math.), Volume XXVI, 1973, pp. 193-229 | MR | Zbl | DOI

Guirardel, V.; Levitt, G. JSJ decompositions : definitions, existence, uniqueness. I: The JSJ deformation space (preprint arXiv:0911.3173 )

Guirardel, V.; Levitt, G. The outer space of a free product, Proc. London Math. Soc., Volume 94 (2007), pp. 695-714 | MR | Zbl | DOI

Gaboriau, D.; Levitt, G. The rank of actions on -trees, Ann. Scient. Éc. Norm. Sup., Volume 28 (1995), pp. 549-570 | MR | Zbl | mathdoc-id | DOI

Gromov, M. Hyperbolic manifolds, groups and actions, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (Kra, I.; Maskit, B., eds.), Princeton Univ. Press (1980), pp. 183-213 | MR | Zbl

Guirardel, V. Dynamics of Out(Fn) on the boundary of outer space, Ann. Scient. Éc. Norm. Sup., Volume 33 (2000), pp. 433-465 | MR | Zbl | mathdoc-id | DOI

Guirardel, V. Limit groups and groups acting freely on n-trees, Geom. Topol., Volume 8 (2004), pp. 1427-1470 | MR | Zbl | DOI

Guirardel, V. Actions of finitely generated groups on -trees, Ann. Inst. Fourier, Volume 58 (2008), pp. 159-211 | MR | Zbl | mathdoc-id | DOI

Guirardel, V. Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998), pp. 89-121 | MR | Zbl | DOI

Hatcher, A. Homological stability for automorphism groups of free groups, Comment. Math. Helv., Volume 70 (1995), pp. 39-62 | MR | Zbl | DOI

Hennion, H. Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes, Z. Wahrsch. verw. Gebiete, Volume 67 (1984), pp. 265-278 | MR | Zbl | DOI

Handel, M.; Mosher, L. Subgroup classification in Out ( F n ) (preprint arXiv:0908.1255 )

Horbez, C. The boundary of the outer space of a free product (preprint arXiv:1408.0543 ) | MR

Horbez, C. Sphere paths in outer space, Alg. Geom. Top., Volume 12 (2012), pp. 2493-2517 | MR | Zbl | DOI

Horbez, C. A short proof of Handel and Mosher's alternative for subgroups of Out (FN) , Groups Geom. Dyn., Volume 10 (2014), pp. 709-721 | MR | DOI

Horbez, C. Spectral rigidity for primitive elements of FN , J. Group Theory, Volume 19 (2016), pp. 55-123 | MR | DOI

Horbez, C. The Poisson boundary of Out(FN) , Duke Math. J., Volume 165 (2016), pp. 341-369 | MR

Hatcher, A.; Vogtmann, K. The complex of free factors of a free group, Quart. J. Math. Oxford Ser., Volume 49 (1998), pp. 459-468 | MR | Zbl | DOI

Jiang, R. Branch Points and Free Actions On -Trees, Arboreal Group Theory (Alperin, R., ed.) (Mathematical Sciences Research Institute Publications), Volume 19, Springer (1991), pp. 251-293 | MR | Zbl | DOI

Kaimanovich, V. Poisson boundaries of random walks on discrete solvable groups, Proceedings of Conference on Probability Measures on Groups X (Oberwolfach) (Heyer, H., ed.), Plenum, New York (1991), pp. 205-238 | MR | Zbl | DOI

Kapovich, I. The frequency space of a free group, Internat. J. Alg. Comput., Volume 15 (2005), pp. 939-969 | MR | Zbl | DOI

Kapovich, I. Currents on free groups, Topological and Asymptotic Aspects of Group Theory (Grigorchuk, R.; Mihalik, M.; Sapir, M.; Sunik, Z., eds.) (AMS Contemp. Math. Series), Volume 394 (2006), pp. 149-176 | MR | Zbl | DOI

Karlsson, A. Two extensions of Thurston's spectral theorem for surface diffeomorphisms, Bull. London Math. Soc., Volume 46 (2014), pp. 217-226 | MR | Zbl | DOI

Kingman, J. The Ergodic Theory of Subadditive Stochastic Processes, J. Roy. Statist. Soc. B, Volume 30 (1968), pp. 499-510 | MR | Zbl | DOI

Karlsson, A.; Ledrappier, F. On laws of large numbers for random walks, Ann. Probab., Volume 34 (2006), pp. 1693-1706 | MR | Zbl | DOI

Kapovich, I.; Lustig, M. The actions of Out(Fk) on the boundary of Outer space and on the space of currents: minimal sets and equivariant incompatibility, Erg. Th. Dyn. Syst., Volume 27 (2007), pp. 827-847 | MR | Zbl | DOI

Kapovich, I.; Lustig, M. Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol., Volume 13 (2009), pp. 1805-1833 | MR | Zbl | DOI

Karlsson, A.; Ledrappier, F. Noncommutative Ergodic Theorems, Geometry, Rigidity and Group Actions (Farb, B.; Fisher, D., eds.) (Chicago Lectures in Math) (2011), pp. 396-418 | MR | Zbl

Kapovich, I.; Levitt, G.; Schupp, P.; Shpilrain, V. Translation equivalence in free groups, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 1527-1546 | MR | Zbl | DOI

Kaimanovich, V.; Masur, H. The Poisson boundary of the mapping class group, Invent. math., Volume 125 (1996), pp. 221-264 | MR | Zbl | DOI

Levitt, G. Counting growth types of automorphisms of free groups, Geom. Funct. Anal., Volume 19 (2009), pp. 1119-1146 | MR | Zbl | DOI

Levitt, G.; Paulin, F. Geometric group actions on trees, Amer. J. Math., Volume 119 (1997), pp. 83-102 | MR | Zbl | DOI

Maher, J. Random walks on the mapping class group, Duke Math. J., Volume 156 (2011), pp. 429-468 | MR | Zbl | DOI

Martin, R. Non-Uniquely Ergodic Foliations of Thin Type, Measured Currents and Automorphisms of Free Groups (1995) | MR

Meinert, S. The Lipschitz metric on deformation spaces of G-trees, Alg. Geom. Topol., Volume 15 (2015), pp. 987-1029 | MR | Zbl | DOI

Maher, J.; Tiozzo, G. Random walks on weakly hyperbolic groups (preprint arXiv:1410.4173 ) | MR

Reynolds, P. On indecomposable trees in the boundary of Outer space, Geom. Dedic., Volume 153 (2011), pp. 59-71 | MR | Zbl | DOI

Rieffel, M. Group C*-algebras as compact quantum metric spaces, Documenta Math., Volume 7 (2002), pp. 605-651 | MR | Zbl | DOI

Shenitzer, A. Decomposition of a group with a single defining relation into a free product, Proc. Amer. Math. Soc., Volume 6 (1955), pp. 273-279 | MR | Zbl | DOI

Stallings, J. Foldings of G-trees, Arboreal Group Theory (Alperin, R., ed.) (Math. Sci. Res. Inst. Publ.), Volume 19, Springer, New York, Inc. (1991), pp. 355-368 | MR | Zbl | DOI

Swarup, G. Decompositions of free groups, J. Pure Appl. Algebra, Volume 40 (1986), pp. 99-102 | MR | Zbl | DOI

Vogtmann, K. Automorphisms of Free Groups and Outer Space, Geom. Dedic., Volume 94 (2002), pp. 1-31 | MR | Zbl | DOI

Walsh, C. The horoboundary and isometry group of Thurston's Lipschitz metric, Handbook of Teichmüller theory (Papadopoulos, A., ed.), Volume IV (2014), pp. 327-353 | MR | Zbl | DOI

Woess, W. Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math., Volume 68 (1989), pp. 271-301 | MR | Zbl | DOI

Cité par Sources :