O-minimality and certain atypical intersections
[o-minimalité et certaines intersections atypiques]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 813-858.

Voir la notice de l'article provenant de la source Numdam

We show that the strategy of point counting in o-minimal structures can be applied to various problems on unlikely intersections that go beyond the conjectures of Manin-Mumford and André-Oort. We verify the so-called Zilber-Pink Conjecture in a product of modular curves on assuming a lower bound for Galois orbits and a sufficiently strong modular Ax-Schanuel Conjecture. In the context of abelian varieties we obtain the Zilber-Pink Conjecture for curves unconditionally when everything is defined over a number field. For higher dimensional subvarieties of abelian varieties we obtain some weaker results and some conditional results.

On démontre que la stratégie de comptage dans des structures o-minimales est suffisante pour traiter plusieurs problèmes qui vont au-delà des conjectures de Manin-Mumford et André-Oort. On vérifie la conjecture de Zilber-Pink pour un produit de courbes modulaires en supposant une minoration assez forte pour la taille de l'orbite de Galois et en supposant une version modulaire du théorème de Ax-Schanuel. Dans le cas des variétés abéliennes, on démontre la conjecture de Zilber-Pink pour les courbes si tous les objets sont définis sur un corps de nombres. Pour les sous-variétés de dimension supérieure, on obtient quelques résultats plus faibles et quelques résultats conditionnels.

Publié le :
DOI : 10.24033/asens.2296
Classification : 11G10, 11G18; 03C64, 11G50, 14K12, 14G35, 14G40.
Keywords: Zilber-Pink conjecture, unlikely intersections, o-minimality.
Mots-clés : Conjecture de Zilber-Pink, intersections exceptionnelles, o-minimalité.
@article{ASENS_2016__49_4_813_0,
     author = {Habegger, Philipp and Pila, Jonathan},
     title = {O-minimality and  certain atypical intersections},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {813--858},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {4},
     year = {2016},
     doi = {10.24033/asens.2296},
     mrnumber = {3552014},
     zbl = {1364.11110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2296/}
}
TY  - JOUR
AU  - Habegger, Philipp
AU  - Pila, Jonathan
TI  - O-minimality and  certain atypical intersections
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 813
EP  - 858
VL  - 49
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2296/
DO  - 10.24033/asens.2296
LA  - en
ID  - ASENS_2016__49_4_813_0
ER  - 
%0 Journal Article
%A Habegger, Philipp
%A Pila, Jonathan
%T O-minimality and  certain atypical intersections
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 813-858
%V 49
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2296/
%R 10.24033/asens.2296
%G en
%F ASENS_2016__49_4_813_0
Habegger, Philipp; Pila, Jonathan. O-minimality and  certain atypical intersections. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 813-858. doi : 10.24033/asens.2296. http://geodesic.mathdoc.fr/articles/10.24033/asens.2296/

Amoroso, F.; David, S. Le problème de Lehmer en dimension supérieure, J. reine angew. Math., Volume 513 (1999), pp. 145-179 (ISSN: 0075-4102) | MR | Zbl | DOI

Ax, J. On Schanuel's conjectures, Ann. of Math., Volume 93 (1971), pp. 252-268 (ISSN: 0003-486X) | MR | Zbl | DOI

Ax, J. Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups, Amer. J. Math., Volume 94 (1972), pp. 1195-1204 (ISSN: 0002-9327) | MR | Zbl | DOI

Bombieri, E.; Gubler, W., New Mathematical Monographs, 4, Cambridge Univ. Press, Cambridge, 2006, 652 pages (ISBN: 978-0-521-84615-8; 0-521-84615-3) | DOI | MR

Baudisch, A.; Hils, M.; Martin-Pizarro, A.; Wagner, F. O. Die böse Farbe, J. Inst. Math. Jussieu, Volume 8 (2009), pp. 415-443 (ISSN: 1474-7480) | MR | Zbl | DOI

Birkenhake, C.; Lange, H., Grundl. math. Wiss., 302, Springer, Berlin, 2004, 635 pages (ISBN: 3-540-20488-1) | MR | Zbl | DOI

Bombieri, E.; Masser, D. W.; Zannier, U. Anomalous subvarieties—structure theorems and applications, Int. Math. Res. Not., Volume 2007 (2007) (ISSN: 1073-7928) | MR | Zbl | DOI

Bombieri, E.; Masser, D. W.; Zannier, U. On unlikely intersections of complex varieties with tori, Acta Arith., Volume 133 (2008), pp. 309-323 (ISSN: 0065-1036) | MR | Zbl | DOI

Bombieri, E.; Masser, D. W.; Zannier, U. Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Not., Volume 1999 (1999), pp. 1119-1140 (ISSN: 1073-7928) | MR | Zbl | DOI

Bertrand, D.; Zudilin, V. V. Derivatives of Siegel modular forms, and exponential functions, Izv. Ross. Akad. Nauk Ser. Mat., Volume 65 (2001), pp. 21-34 ; English translation: Izv. Math. 65 (2001), 659–671 (ISSN: 0373-2436) | MR | Zbl | DOI

Capuano, L. Unlikely Intersections and Applications to Diophantine Geometry (2014)

Carrizosa, M. Problème de Lehmer et variétés abéliennes CM, C. R. Math. Acad. Sci. Paris, Volume 346 (2008), pp. 1219-1224 (ISSN: 1631-073X) | MR | Zbl | DOI

Carrizosa, M. Petits points et multiplication complexe, Int. Math. Res. Not., Volume 2009 (2009), pp. 3016-3097 (ISSN: 1073-7928) | MR | Zbl | DOI

Checcoli, S.; Veneziano, F.; Viada, E. On Torsion Anomalous Intersections, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., Volume 25 (2014), pp. 1-36 | MR | Zbl

Galateau, A. Une minoration du minimum essentiel sur les variétés abéliennes, Comment. Math. Helv., Volume 85 (2010), pp. 775-812 (ISSN: 0010-2571) | MR | Zbl | DOI

Grauert, H.; Remmert, R., Grundl. math. Wiss., 265, Springer, Berlin, 1984, 249 pages (ISBN: 3-540-13178-7) | MR | Zbl | DOI

Habegger, P. Intersecting subvarieties of abelian varieties with algebraic subgroups of complementary dimension, Invent. math., Volume 176 (2009), pp. 405-447 (ISSN: 0020-9910) | MR | Zbl | DOI

Hartshorne, R., Graduate Texts in Math., 52, Springer, 1977 | MR | Zbl

Habegger, P.; Pila, J. Some unlikely intersections beyond André-Oort, Compos. Math., Volume 148 (2012), pp. 1-27 (ISSN: 0010-437X) | MR | Zbl | DOI

Kirby, J. The theory of the exponential differential equations of semiabelian varieties, Selecta Math. (N.S.), Volume 15 (2009), pp. 445-486 (ISSN: 1022-1824) | MR | Zbl | DOI

Lang, S., Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966, 105 pages | MR | Zbl

Lang, S., Graduate Texts in Math., 112, Springer, New York, 1987, 326 pages (ISBN: 0-387-96508-4) | MR | Zbl | DOI

Mahler, K. On algebraic differential equations satisfied by automorphic functions., J. Austral. Math. Soc., Volume 10 (1969), pp. 445-450 (ISSN: 0263-6115) | MR | Zbl | DOI

Masser, D. W. Small values of the quadratic part of the Néron-Tate height on an abelian variety, Compositio Math., Volume 53 (1984), pp. 153-170 (ISSN: 0010-437X) | MR | Zbl | mathdoc-id

Maurin, G. Courbes algébriques et équations multiplicatives, Math. Ann., Volume 341 (2008), pp. 789-824 (ISSN: 0025-5831) | MR | Zbl | DOI

Masser, D.; Zannier, U. Torsion anomalous points and families of elliptic curves, C. R. Math. Acad. Sci. Paris, Volume 346 (2008), pp. 491-494 (ISSN: 1631-073X) | MR | Zbl | DOI

Pila, J. O-minimality and the André-Oort conjecture for n , Ann. of Math., Volume 173 (2011), pp. 1779-1840 (ISSN: 0003-486X) | MR | Zbl | DOI

Pila, J. Special point problems with elliptic modular surfaces, Mathematika, Volume 60 (2014), pp. 1-31 (ISSN: 0025-5793) | MR | Zbl | DOI

Pink, R., Geometric methods in algebra and number theory (Progr. Math.), Volume 235, Birkhäuser, 2005, pp. 251-282 | MR | Zbl | DOI

Pink, R. A Common Generalization of the Conjectures of André-Oort, Manin-Mumford, and Mordell-Lang (2005) (preprint https://people.math.ethz.ch/~pink/ftp/AOMMML.pdf )

Poizat, B. L'égalité au cube, J. Symbolic Logic, Volume 66 (2001), pp. 1647-1676 (ISSN: 0022-4812) | MR | Zbl | DOI

Peterzil, Y.; Starchenko, S. Uniform definability of the Weierstrass functions and generalized tori of dimension one, Selecta Math. (N.S.), Volume 10 (2004), pp. 525-550 (ISSN: 1022-1824) | MR | Zbl | DOI

Peterzil, Y.; Starchenko, S. Tame complex analysis and o-minimality, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 58-81 | MR | Zbl

Pila, J.; Tsimerman, J. Ax-Schanuel for the j -function (preprint arXiv:1412.8255, to appear in Duke Math. J ) | MR

Pila, J.; Wilkie, A. J. The rational points of a definable set, Duke Math. J., Volume 133 (2006), pp. 591-616 (ISSN: 0012-7094) | MR | Zbl | DOI

Pila, J.; Zannier, U. Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 19 (2008), pp. 149-162 (ISSN: 1120-6330) | MR | Zbl | DOI

Ratazzi, N. Intersection de courbes et de sous-groupes et problèmes de minoration de dernière hauteur dans les variétés abéliennes C.M, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 1575-1633 http://aif.cedram.org/... (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI

Rémond, G. Intersection de sous-groupes et de sous-variétés. I, Math. Ann., Volume 333 (2005), pp. 525-548 (ISSN: 0025-5831) | MR | Zbl | DOI

Rémond, G. Intersection de sous-groupes et de sous-variétés. II, J. Inst. Math. Jussieu, Volume 6 (2007), pp. 317-348 (ISSN: 1474-7480) | MR | Zbl | DOI

Rémond, G. Intersection de sous-groupes et de sous-variétés. III, Comment. Math. Helv., Volume 84 (2009), pp. 835-863 (ISSN: 0010-2571) | MR | Zbl | DOI

Ratazzi, N.; Ullmo, E., Arithmetic geometry (Clay Math. Proc.), Volume 8, Amer. Math. Soc., Providence, RI, 2009, pp. 419-430 | MR | Zbl

Rémond, G.; Viada, E. Problème de Mordell-Lang modulo certaines sous-variétés abéliennes, Internat. Math. Res. Notices, Volume 2013 (2013), pp. 1915-1931 | MR | Zbl

Tsimerman, J. Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points, J. Amer. Math. Soc., Volume 25 (2012), pp. 1091-1117 (ISSN: 0894-0347) | MR | Zbl | DOI

Ullmo, E. Applications du théorème d'Ax-Lindemann hyperbolique, Compos. Math., Volume 150 (2014), pp. 175-190 (ISSN: 0010-437X) | MR | Zbl | DOI

Ullmo, E.; Yafaev, A. Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites galoisiennes de points spéciaux, Bull. Soc. Math. France, Volume 143 (2015), pp. 197-228 (ISSN: 0037-9484) | MR | Zbl | DOI

van den Dries, L., London Mathematical Society Lecture Note Series, 248, Cambridge Univ. Press, Cambridge, 1998, 180 pages (ISBN: 0-521-59838-9) | MR | Zbl | DOI

van den Dries, L.; Miller, C. On the real exponential field with restricted analytic functions, Israel J. Math., Volume 85 (1994), pp. 19-56 (ISSN: 0021-2172) | MR | Zbl | DOI

van den Dries, L.; Macintyre, A.; Marker, D. The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., Volume 140 (1994), pp. 183-205 (ISSN: 0003-486X) | MR | Zbl | DOI

Viada, E. The intersection of a curve with algebraic subgroups in a product of elliptic curves, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 2 (2003), pp. 47-75 (ISSN: 0391-173X) | MR | Zbl | mathdoc-id

Viada, E. The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve, Algebra Number Theory, Volume 2 (2008), pp. 249-298 (ISSN: 1937-0652) | MR | Zbl | DOI

Zannier, U. Appendix, A. Schinzel, Polynomials with special regard to reducibility (Encyclopedia of Mathematics and its Applications), Volume 77, Cambridge Univ. Press, Cambridge (2000), pp. 517-539 (ISBN: 0-521-66225-7) | DOI | MR

Zannier, U., Annals of Math. Studies, 181, Princeton Univ. Press, Princeton, NJ, 2012, 160 pages (ISBN: 978-0-691-15371-1) | MR | Zbl

Zilber, B. Exponential sums equations and the Schanuel conjecture, J. London Math. Soc., Volume 65 (2002), pp. 27-44 (ISSN: 0024-6107) | MR | Zbl | DOI

Cité par Sources :