Reduction of symplectic homeomorphisms
[Réduction des homéomorphismes symplectiques]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 633-668.

Voir la notice de l'article provenant de la source Numdam

In [9], we proved that symplectic homeomorphisms preserving a coisotropic submanifold C, preserve its characteristic foliation as well. As a consequence, such symplectic homeomorphisms descend to the reduction of the coisotropic C.

In this article we show that these reduced homeomorphisms continue to exhibit certain symplectic properties. In particular, in the specific setting where the symplectic manifold is a torus and the coisotropic is a standard subtorus, we prove that the reduced homeomorphism preserves spectral invariants and hence the spectral capacity.

To prove our main result, we use Lagrangian Floer theory to construct a new class of spectral invariants which satisfy a non-standard triangle inequality.

Nous avons démontré dans [9], qu'un homéomorphisme symplectique qui laisse invariante une sous-variété coïsotrope C, préserve également son feuilletage caractéristique. Il induit donc un homéomorphisme sur la réduction symplectique de C.

Dans cet article, nous démontrons que l'homéomorphisme ainsi obtenu exhibe certaines propriétés symplectiques. En particulier, dans le cas où la variété symplectique ambiante est un tore et la sous-variété coïsotrope est un sous-tore standard, nous démontrons que l'homéomorphisme réduit préserve les invariants spectraux et donc aussi la capacité spectrale.

Pour démontrer notre résultat principal, nous construisons, à l'aide de l'homologie de Floer lagrangienne, une nouvelle famille d'invariants spectraux qui satisfont un nouveau type d'inégalité triangulaire.

Publié le :
DOI : 10.24033/asens.2292
Classification : 53D40; 37J05.
Keywords: Symplectic manifolds, symplectic reduction, $C^0$--symplectic topology, spectral invariants.
Mots-clés : Variétés symplectiques, réduction symplectique, topologie symplectique $C^0$, invariants spectraux.
@article{ASENS_2016__49_3_633_0,
     author = {Humili\`ere, Vincent and Leclercq, R\'emi and Seyfaddini, Sobhan},
     title = {Reduction of symplectic homeomorphisms},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {633--668},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {3},
     year = {2016},
     doi = {10.24033/asens.2292},
     mrnumber = {3503828},
     zbl = {1341.53114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2292/}
}
TY  - JOUR
AU  - Humilière, Vincent
AU  - Leclercq, Rémi
AU  - Seyfaddini, Sobhan
TI  - Reduction of symplectic homeomorphisms
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 633
EP  - 668
VL  - 49
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2292/
DO  - 10.24033/asens.2292
LA  - en
ID  - ASENS_2016__49_3_633_0
ER  - 
%0 Journal Article
%A Humilière, Vincent
%A Leclercq, Rémi
%A Seyfaddini, Sobhan
%T Reduction of symplectic homeomorphisms
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 633-668
%V 49
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2292/
%R 10.24033/asens.2292
%G en
%F ASENS_2016__49_3_633_0
Humilière, Vincent; Leclercq, Rémi; Seyfaddini, Sobhan. Reduction of symplectic homeomorphisms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 633-668. doi : 10.24033/asens.2292. http://geodesic.mathdoc.fr/articles/10.24033/asens.2292/

Albers, P. A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | MR | Zbl | DOI

Abbondandolo, A.; Schwarz, M. Floer homology of cotangent bundles and the loop product, Geom. Topol., Volume 14 (2010), pp. 1569-1722 (ISSN: 1465-3060) | MR | Zbl | DOI

Auroux, D. A beginner's introduction to Fukaya categories, Contact and symplectic topology (Bourgeois, F. et al., eds.) (Bolyai Soc. Math. Stud.), Volume 26 (2014), pp. 85-136 | MR | Zbl | DOI

Barraud, J.-F.; Cornea, O., Morse theoretic methods in nonlinear analysis and in symplectic topology (NATO Sci. Ser. II Math. Phys. Chem.), Volume 217, Springer, Dordrecht, 2006, pp. 109-148 | MR | Zbl | DOI

Buhovsky, L.; Opshtein, E. Some quantitative results in C 0 symplectic geometry (preprint arXiv:1404.0875, to appear in Invent. math ) | MR

Entov, M.; Polterovich, L. Rigid subsets of symplectic manifolds, Compos. Math., Volume 145 (2009), pp. 773-826 (ISSN: 0010-437X) | MR | Zbl | DOI

Hu, S.; Lalonde, F.; Leclercq, R. Homological Lagrangian monodromy, Geom. Topol., Volume 15 (2011), pp. 1617-1650 (ISSN: 1465-3060) | MR | Zbl | DOI

Humilière, V.; Leclercq, R.; Seyfaddini, S. Coisotropic rigidity and C0-symplectic geometry, Duke Math. J., Volume 164 (2015), pp. 767-799 (ISSN: 0012-7094) | MR | Zbl | DOI

Humilière, V. On some completions of the space of Hamiltonian maps, Bull. Soc. Math. France, Volume 136 (2008), pp. 373-404 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI

Katić, J.; Milinković, D. Piunikhin-Salamon-Schwarz isomorphisms for Lagrangian intersections, Differential Geom. Appl., Volume 22 (2005), pp. 215-227 (ISSN: 0926-2245) | MR | Zbl | DOI

Leclercq, R. Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn., Volume 2 (2008), pp. 249-286 (ISSN: 1930-5311) | MR | Zbl | DOI

Leclercq, R. The Seidel morphism of Cartesian products, Algebr. Geom. Topol., Volume 9 (2009), pp. 1951-1969 (ISSN: 1472-2747) | MR | Zbl | DOI

Laudenbach, F.; Sikorav, J.-C. Hamiltonian disjunction and limits of Lagrangian submanifolds, Int. Math. Res. Not., Volume 1994 (1994), pp. 161-168 (ISSN: 1073-7928) | MR | Zbl | DOI

Monzner, A.; Vichery, N.; Zapolsky, F. Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization, J. Mod. Dyn., Volume 6 (2012), pp. 205-249 | MR | Zbl

Oh, Y.-G. Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle, J. Differential Geom., Volume 46 (1997), pp. 499-577 http://projecteuclid.org/... (ISSN: 0022-040X) | MR | Zbl

Oh, Y.-G.; Müller, S. The group of Hamiltonian homeomorphisms and C0–symplectic topology, J. Symplectic Geom., Volume 5 (2007), pp. 167-219 http://projecteuclid.org/... (ISSN: 1527-5256) | MR | Zbl | DOI

Opshtein, E. C0–rigidity of characteristics in symplectic geometry, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009), pp. 857-864 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Piunikhin, S.; Salamon, D.; Schwarz, M., Contact and symplectic geometry (Cambridge, 1994) (Publ. Newton Inst.), Volume 8, Cambridge Univ. Press, 1996, pp. 171-200 | MR | Zbl

Schwarz, M. On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., Volume 193 (2000), pp. 419-461 (ISSN: 0030-8730) | MR | Zbl | DOI

Sabloff, J. M.; Traynor, L. Obstructions to the existence and squeezing of Lagrangian cobordisms, J. Topol. Anal., Volume 2 (2010), pp. 203-232 (ISSN: 1793-5253) | MR | Zbl | DOI

Théret, D. A Lagrangian camel, Comment. Math. Helv., Volume 74 (1999), pp. 591-614 (ISSN: 0010-2571) | MR | Zbl | DOI

Viterbo, C. Symplectic topology as the geometry of generating functions, Math. Annalen, Volume 292 (1992), pp. 685-710 | MR | Zbl | DOI

Zapolsky, F. On the Hofer geometry for weakly exact Lagrangian submanifolds, J. Symplectic Geom., Volume 11 (2013), pp. 475-488 http://projecteuclid.org/euclid.jsg/1384282845 (ISSN: 1527-5256) | MR | Zbl | DOI

Cité par Sources :