Voir la notice de l'article provenant de la source Numdam
Given an initial data with vorticity in (which implies that belongs to the Sobolev space ), we prove that the solution given by the classical Fujita-Kato theorem blows up in a finite time only if, for any in and any unit vector in there holds We remark that all these quantities are scaling invariant under the scaling transformation of Navier-Stokes system.
On considère une donnée initiale dont la vorticité appartient à (ce qui implique que appartient à l'espace de Sobolev ). Nous démontrons que si la solution de l'équation de Navier-Stokes tridimensionnelle associée à par le théorème de Fujita-Kato développe une singularité à l'instant (fini) alors, pour tout dans l'intervalle et tout vecteur unitaire de on a Remarquons que toutes ses quantités sont invariantes par les changements d'échelle de l'équation de Navier-Stokes.
@article{ASENS_2016__49_1_131_0, author = {Chemin, Jean-Yves and Zhang, Ping}, title = {On the critical one component regularity for {3-D} {Navier-Stokes} system}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {131--167}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {1}, year = {2016}, doi = {10.24033/asens.2278}, mrnumber = {3465978}, zbl = {1342.35210}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2278/} }
TY - JOUR AU - Chemin, Jean-Yves AU - Zhang, Ping TI - On the critical one component regularity for 3-D Navier-Stokes system JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 131 EP - 167 VL - 49 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2278/ DO - 10.24033/asens.2278 LA - en ID - ASENS_2016__49_1_131_0 ER -
%0 Journal Article %A Chemin, Jean-Yves %A Zhang, Ping %T On the critical one component regularity for 3-D Navier-Stokes system %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 131-167 %V 49 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2278/ %R 10.24033/asens.2278 %G en %F ASENS_2016__49_1_131_0
Chemin, Jean-Yves; Zhang, Ping. On the critical one component regularity for 3-D Navier-Stokes system. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 131-167. doi : 10.24033/asens.2278. http://geodesic.mathdoc.fr/articles/10.24033/asens.2278/
A new regularity class for the Navier-Stokes equations in , Chinese Ann. Math. Ser. B, Volume 16 (1995), pp. 407-412 ; a Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), 797 (ISSN: 0252-9599) | MR | Zbl
, Grundl. math. Wiss., 343, Springer, Heidelberg, 2011, 523 pages (ISBN: 978-3-642-16829-1) | MR | Zbl | DOI
Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., Volume 94 (1984), pp. 61-66 http://projecteuclid.org/euclid.cmp/1103941230 (ISSN: 0010-3616) | MR | Zbl | DOI
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
Fluids with anisotropic viscosity, M2AN Math. Model. Numer. Anal., Volume 34 (2000), pp. 315-335 (ISSN: 0764-583X) | MR | Zbl | mathdoc-id | DOI
Sums of large global solutions to the incompressible Navier-Stokes equations, J. reine angew. Math., Volume 681 (2013), pp. 65-82 (ISSN: 0075-4102) | MR | Zbl
Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal., Volume 23 (1992), pp. 20-28 (ISSN: 0036-1410) | MR | Zbl | DOI
Self-improving bounds for the Navier-Stokes equations, Bull. Soc. Math. France, Volume 140 (2012), pp. 583-597 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI
Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., Volume 57 (2008), pp. 2643-2661 (ISSN: 0022-2518) | MR | Zbl | DOI
Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 919-932 (ISSN: 0003-9527) | MR | Zbl | DOI
On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, Comm. Math. Phys., Volume 272 (2007), pp. 529-566 (ISSN: 0010-3616) | MR | Zbl | DOI
On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315 (ISSN: 0003-9527) | MR | Zbl | DOI
Some new regularity criteria for the 3D Navier-Stokes Equations (preprint arXiv:1212.2335 )
A profile decomposition approach to the Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013), pp. 1527-1559 (ISSN: 0025-5831) | MR | Zbl | DOI
Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differential Equations (2002) (ISSN: 1072-6691) | MR | Zbl
-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, Volume 58 (2003), pp. 3-44 (ISSN: 0042-1316) | MR | Zbl | DOI
One component regularity for the Navier-Stokes equations, Nonlinearity, Volume 19 (2006), pp. 453-469 (ISSN: 0951-7715) | MR | Zbl | DOI
Navier-Stokes equations with regularity in one direction, J. Math. Phys., Volume 48 (2007) (ISSN: 0022-2488) | MR | Zbl | DOI
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248 (ISSN: 0001-5962) | MR | JFM | DOI
, Topics in mathematical fluid mechanics (Quad. Mat.), Volume 10, Dept. Math., Seconda Univ. Napoli, Caserta, 2002, pp. 163-183 | MR | Zbl
, Applied nonlinear analysis, Kluwer/Plenum, New York, 1999, pp. 391-402 | MR | Zbl
Équation anisotrope de Navier-Stokes dans des espaces critiques, Rev. Mat. Iberoamericana, Volume 21 (2005), pp. 179-235 (ISSN: 0213-2230) | MR | Zbl | DOI
On the result of He concerning the smoothness of solutions to the Navier-Stokes equations, Electron. J. Differential Equations (2003) (ISSN: 1072-6691) | MR | Zbl
Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., Volume 49 (2004), pp. 483-493 (ISSN: 0862-7940) | MR | Zbl | DOI
A note on coupling of velocity components in the Navier-Stokes equations, ZAMM Z. Angew. Math. Mech., Volume 84 (2004), pp. 124-127 (ISSN: 0044-2267) | MR | Zbl | DOI
On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, Volume 23 (2010), pp. 1097-1107 (ISSN: 0951-7715) | MR | Zbl | DOI
Cité par Sources :