Complete periodicity of Prym eigenforms
[Complète périodicité des formes propres Prym]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 87-130.

Voir la notice de l'article provenant de la source Numdam

This paper deals with Prym eigenforms which are introduced previously by McMullen.We prove several results on the directional flow on those surfaces, related to complete periodicity (introduced by Calta). More precisely we show that any homological direction is algebraically periodic, and any direction of a regular closed geodesic is a completely periodic direction. As a consequence we draw that the limit set of the Veech group of every Prym eigenform in some Prym loci of genus 3,4, and 5 is either empty, one point, or the full circle at infinity. We also construct new examples of translation surfaces satisfying the topological dichotomy (without being lattice surfaces). As a corollary we obtain new translation surfaces whose Veech group is infinitely generated and of the first kind.

Dans cet article nous démontrons plusieurs résultats topologiques sur les formes propres des lieux Prym, formes différentielles abéliennes découvertes par McMullen dans des travaux antérieurs. Nous obtenons une propriété dite de complète périodicité (introduite par Calta), ainsi que de nouvelles familles de surfaces de translation vérifiant la dichotomie topologique de Veech (sans être une surface de Veech) . Comme conséquences nous montrons que l'ensemble limite des groupes de Veech de formes propres de certaines strates en genre 3,4, et 5 est soit vide, soit un point, soit tout le cercle à l'infini. Ceci nous permet de plus de construire de nouveaux exemples de surfaces de translation ayant un groupe de Veech infiniment engendré et de première espèce.

Notre preuve repose sur une nouvelle approche de la notion de feuilletage périodique par les involutions linéaires.

Publié le :
DOI : 10.24033/asens.2277
Classification : 37E05; 37D40
Keywords: Real multiplication, Prym locus, translation surface.
Mots-clés : Multiplication réelle, lieu Prym, surfaces de translation.
@article{ASENS_2016__49_1_87_0,
     author = {Lanneau, Erwan and Nguyen, Duc-Manh},
     title = {Complete periodicity of {Prym} eigenforms},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {87--130},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {1},
     year = {2016},
     doi = {10.24033/asens.2277},
     mrnumber = {3465977},
     zbl = {1338.32013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2277/}
}
TY  - JOUR
AU  - Lanneau, Erwan
AU  - Nguyen, Duc-Manh
TI  - Complete periodicity of Prym eigenforms
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 87
EP  - 130
VL  - 49
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2277/
DO  - 10.24033/asens.2277
LA  - en
ID  - ASENS_2016__49_1_87_0
ER  - 
%0 Journal Article
%A Lanneau, Erwan
%A Nguyen, Duc-Manh
%T Complete periodicity of Prym eigenforms
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 87-130
%V 49
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2277/
%R 10.24033/asens.2277
%G en
%F ASENS_2016__49_1_87_0
Lanneau, Erwan; Nguyen, Duc-Manh. Complete periodicity of Prym eigenforms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 87-130. doi : 10.24033/asens.2277. http://geodesic.mathdoc.fr/articles/10.24033/asens.2277/

Avila, A.; Resende, M. J. Exponential mixing for the Teichmüller flow in the space of quadratic differentials, Comment. Math. Helv., Volume 87 (2012), pp. 589-638 (ISSN: 0010-2571) | MR | Zbl | DOI

Arnoux, P. Un invariant pour les échanges d'intervalles et les flots sur les surfaces (1981) | MR

Boissy, C.; Lanneau, E. Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials, Ergodic Theory Dynam. Systems, Volume 29 (2009), pp. 767-816 (ISSN: 0143-3857) | MR | Zbl | DOI

Boshernitzan, M. D. Rank two interval exchange transformations, Ergodic Theory Dynam. Systems, Volume 8 (1988), pp. 379-394 (ISSN: 0143-3857) | MR | Zbl | DOI

Calta, K. Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., Volume 17 (2004), pp. 871-908 (ISSN: 0894-0347) | MR | Zbl | DOI

Cheung, Y.; Hubert, P.; Masur, H. Topological dichotomy and strict ergodicity for translation surfaces, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1729-1748 (ISSN: 0143-3857) | MR | Zbl | DOI

Cheung, Y.; Masur, H. Minimal non-ergodic directions on genus-2 translation surfaces, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 341-351 (ISSN: 0143-3857) | MR | Zbl | DOI

Calta, K.; Smillie, J. Algebraically periodic translation surfaces, J. Mod. Dyn., Volume 2 (2008), pp. 209-248 (ISSN: 1930-5311) | MR | Zbl | DOI

Danthony, C.; Nogueira, A. Involutions linéaires et feuilletages mesurés, C. R. Acad. Sci. Paris Sér. I Math., Volume 307 (1988), pp. 409-412 (ISSN: 0249-6291) | MR | Zbl

Eskin, A.; Mirzakhani, M. On invariant and stationary measures for the SL ( 2 , ) action on moduli space (preprint arXiv:1302.3320 ) | MR

Eskin, A.; Masur, H.; Zorich, A. Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math. IHÉS, Volume 97 (2003), pp. 61-179 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Hubert, P.; Schmidt, T. A. Infinitely generated Veech groups, Duke Math. J., Volume 123 (2004), pp. 49-69 (ISSN: 0012-7094) | MR | Zbl | DOI

Katok, S., Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992, 175 pages (ISBN: 0-226-42582-7; 0-226-42583-5) | MR | Zbl

Kenyon, R.; Smillie, J. Billiards on rational-angled triangles, Comment. Math. Helv., Volume 75 (2000), pp. 65-108 (ISSN: 0010-2571) | MR | Zbl | DOI

Kontsevich, M.; Zorich, A. Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. math., Volume 153 (2003), pp. 631-678 (ISSN: 0020-9910) | MR | Zbl | DOI

Lanneau, E. Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv., Volume 79 (2004), pp. 471-501 (ISSN: 0010-2571) | MR | Zbl | DOI

Lanneau, E.; Nguyen, D.-M. Components of Prym eigenform loci in genus three (preprint arXiv:1408.1064 ) | MR

Masur, H. Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | MR | Zbl | DOI

Masur, H. Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J., Volume 53 (1986), pp. 307-314 (ISSN: 0012-7094) | MR | Zbl | DOI

McMullen, C. T. Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., Volume 16 (2003), pp. 857-885 (ISSN: 0894-0347) | MR | Zbl | DOI

McMullen, C. T. Teichmüller geodesics of infinite complexity, Acta Math., Volume 191 (2003), pp. 191-223 (ISSN: 0001-5962) | MR | Zbl | DOI

McMullen, C. T. Prym varieties and Teichmüller curves, Duke Math. J., Volume 133 (2006), pp. 569-590 (ISSN: 0012-7094) | MR | Zbl | DOI

McMullen, C. T. Dynamics of SL 2() over moduli space in genus two, Ann. of Math., Volume 165 (2007), pp. 397-456 (ISSN: 0003-486X) | MR | Zbl | DOI

Marmi, S.; Moussa, P.; Yoccoz, J.-C. The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc., Volume 18 (2005), pp. 823-872 (ISSN: 0894-0347) | MR | Zbl | DOI

Möller, M. Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc., Volume 19 (2006), pp. 327-344 (ISSN: 0894-0347) | MR | Zbl | DOI

Minsky, Y.; Weiss, B. Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014), pp. 245-284 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Masur, H.; Zorich, A. Multiple saddle connections on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal., Volume 18 (2008), pp. 919-987 (ISSN: 1016-443X) | MR | Zbl | DOI

Nguyen, D.-M. Parallelogram decompositions and generic surfaces in hyp (4) , Geom. Topol., Volume 15 (2011), pp. 1707-1747 (ISSN: 1465-3060) | MR | Zbl | DOI

Nguyen, D.-M.; Wright, A. Non-Veech surfaces in hyp (4) are generic, Geom. Funct. Anal., Volume 24 (2014), pp. 1316-1335 (ISSN: 1016-443X) | MR | Zbl | DOI

Stein, W. et al. Sage Mathematics Software (Version 4.2.1) (2009) (The Sage Development Team, 2009, http://www.sagemath.org )

Smillie, J.; Weiss, B., Partially hyperbolic dynamics, laminations, and Teichmüller flow (Fields Inst. Commun.), Volume 51, Amer. Math. Soc., Providence, RI, 2007, pp. 125-137 | MR | Zbl

Smillie, J.; Weiss, B. Characterizations of lattice surfaces, Invent. math., Volume 180 (2010), pp. 535-557 (ISSN: 0020-9910) | MR | Zbl | DOI

Thurston, W. P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc., Volume 19 (1988), pp. 417-431 (ISSN: 0273-0979) | MR | Zbl | DOI

Veech, W. A. Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242 (ISSN: 0003-486X) | MR | Zbl | DOI

Veech, W. A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. math., Volume 97 (1989), pp. 553-583 (ISSN: 0020-9910) | MR | Zbl | DOI

Wright, A. Cylinder deformations in orbit closures of translation surfaces, Geom. Topol., Volume 19 (2015), pp. 413-438 (ISSN: 1465-3060) | MR | Zbl | DOI

Zorich, A., Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | MR | Zbl | DOI

Cité par Sources :