Voir la notice de l'article provenant de la source Numdam
We prove maximal inequalities for concentric ball and spherical shell averages on a general Gromov hyperbolic group, in arbitrary probability preserving actions of the group. Under an additional condition, satisfied for example by all groups acting isometrically and properly discontinuously on CAT() spaces, we prove a pointwise ergodic theorem with respect to a sequence of probability measures supported on concentric spherical shells.
Pour tout groupe hyperbolique au sens de Gromov et pour toute action, préservant la mesure, sur un espace de probabilités, nous démontrons une inégalité maximale pour les moyennes sur des boules concentriques ou sur des anneaux sphériques concentriques de même épaisseur. Sous une hypothèse supplémentaire, valable par exemple pour les actions isométriques et proprement discontinues sur des espaces CAT(), nous démontrons de plus un théorème ergodique ponctuel pour une suite de mesures de probabilités à support dans des anneaux sphériques concentriques.
@article{ASENS_2015__48_5_1113_0, author = {Bowen, Lewis and Nevo, Amos}, title = {Von {Neumann} and {Birkhoff} ergodic theorems for negatively curved groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1113--1147}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {5}, year = {2015}, doi = {10.24033/asens.2267}, mrnumber = {3429477}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2267/} }
TY - JOUR AU - Bowen, Lewis AU - Nevo, Amos TI - Von Neumann and Birkhoff ergodic theorems for negatively curved groups JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 1113 EP - 1147 VL - 48 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2267/ DO - 10.24033/asens.2267 LA - en ID - ASENS_2015__48_5_1113_0 ER -
%0 Journal Article %A Bowen, Lewis %A Nevo, Amos %T Von Neumann and Birkhoff ergodic theorems for negatively curved groups %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 1113-1147 %V 48 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2267/ %R 10.24033/asens.2267 %G en %F ASENS_2015__48_5_1113_0
Bowen, Lewis; Nevo, Amos. Von Neumann and Birkhoff ergodic theorems for negatively curved groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1113-1147. doi : 10.24033/asens.2267. http://geodesic.mathdoc.fr/articles/10.24033/asens.2267/
, Monographies de L'Enseignement Mathématique, 41, L'Enseignement Mathématique, Geneva, 2010, 270 pages (ISBN: 978-2-940264-08-7) | MR | Zbl
Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology, Volume 33 (1994), pp. 765-783 (ISSN: 0040-9383) | MR | Zbl | DOI
Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain, Dokl. Akad. Nauk SSSR, Volume 148 (1963), pp. 9-12 (ISSN: 0002-3264) | MR | Zbl
, Algebraic and topological dynamics (Contemp. Math.), Volume 385, Amer. Math. Soc., Providence, RI, 2005, pp. 77-87 | MR | Zbl | DOI
Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math., Volume 125 (1987), pp. 495-536 (ISSN: 0003-486X) | MR | Zbl | DOI
, Potential theory—surveys and problems (Prague, 1987) (Lecture Notes in Math.), Volume 1344, Springer, Berlin, 1988, pp. 1-23 | MR | Zbl | DOI
, École d'été de Probabilités de Saint-Flour XVIII—1988 (Lecture Notes in Math.), Volume 1427, Springer, Berlin, 1990, pp. 1-112 | MR | Zbl | DOI
Finite subgroups of hyperbolic groups, Algebra i Logika, Volume 34 (1995), pp. 619-622 (ISSN: 0373-9252) | MR | Zbl | DOI
, Grund. Math. Wiss., 319, Springer, Berlin, 1999, 643 pages (ISBN: 3-540-64324-9) | MR | Zbl | DOI
Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011), pp. 683-721 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
Proof of the ergodic theorem, Proc. Nat. Acad. Sci. USA, Volume 17 (1931), pp. 656-660 | Zbl | DOI
Central limit theorems for Gromov hyperbolic groups, J. Theoret. Probab., Volume 23 (2010), pp. 871-887 (ISSN: 0894-9840) | MR | Zbl | DOI
Maximal inequality and ergodic theorems for Markov groups, Tr. Mat. Inst. Steklova, Volume 277 (2012), pp. 33-48 translation: Proc. Steklov Inst. Math. 277 (2012), 27–42 (ISBN: 5-7846-0124-5; 978-5-7846-0124-7, ISSN: 0371-9685) | MR | Zbl
Cesàro convergence of spherical averages for measure-preserving actions of Markov semigroups and groups, Int. Math. Res. Not., Volume 2012 (2012), pp. 4797-4829 (ISSN: 1073-7928) | MR | Zbl | DOI
Geometric covering arguments and ergodic theorems for free groups, Enseign. Math., Volume 59 (2013), pp. 133-164 (ISSN: 0013-8584) | MR | Zbl | DOI
Pointwise ergodic theorems beyond amenable groups, Ergodic Theory Dynam. Systems, Volume 33 (2013), pp. 777-820 (ISSN: 0143-3857) | MR | Zbl | DOI
Amenable equivalence relations and the construction of ergodic averages for group actions, J. Anal. Math., Volume 126 (2015), pp. 359-388 (ISSN: 0021-7670) | DOI | MR
Invariant measures on the space of horofunctions of a word hyperbolic group, Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 97-129 (ISSN: 0143-3857) | MR | Zbl | DOI
The type and stable type of the boundary of a Gromov hyperbolic group, Geom. Dedicata, Volume 172 (2014), pp. 363-386 (ISSN: 0046-5755) | MR | Zbl | DOI
Finite subgroups of hyperbolic groups, Internat. J. Algebra Comput., Volume 10 (2000), pp. 399-405 (ISSN: 0218-1967) | MR | Zbl | DOI
Geometry of locally compact groups of polynomial growth and shape of large balls, Groups Geom. Dyn., Volume 8 (2014), pp. 669-732 (ISSN: 1661-7207) | MR | Zbl | DOI
Operator ergodic theorems for actions of free semigroups and groups, Funktsional. Anal. i Prilozhen., Volume 34 (2000), pp. 1-17 (ISSN: 0374-1990) | MR | Zbl | DOI
Convergence of spherical averages for actions of free groups, Ann. of Math., Volume 155 (2002), pp. 929-944 (ISSN: 0003-486X) | MR | Zbl | DOI
, Geometry and topology down under (Contemp. Math.), Volume 597, Amer. Math. Soc., Providence, RI, 2013, pp. 15-52 | MR | Zbl | DOI
Combable functions, quasimorphisms, and the central limit theorem, Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 1343-1369 (ISSN: 0143-3857) | MR | Zbl | DOI
An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems, Volume 1 (1981), p. 431-450 (1982) (ISSN: 0143-3857) | MR | Zbl | DOI
Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces, Geom. Funct. Anal., Volume 17 (2007), pp. 707-769 (ISSN: 1016-443X) | MR | Zbl | DOI
Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math., Volume 51 (1998), pp. 113-138 (ISSN: 0010-3640) | MR | Zbl | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math., Volume 159 (1993), pp. 241-270 http://projecteuclid.org/euclid.pjm/1102634263 (ISSN: 0030-8730) | MR | Zbl | DOI
Horofunctions and symbolic dynamics on Gromov hyperbolic groups, Glasg. Math. J., Volume 43 (2001), pp. 425-456 (ISSN: 0017-0895) | MR | Zbl | DOI
Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 843-858 (ISSN: 0143-3857) | MR | Zbl | DOI
, Cambridge Univ. Press, Cambridge, 2009, 810 pages (ISBN: 978-0-521-89806-5) |, Annals of Math. Studies, 172, Princeton Univ. Press, Princeton, NJ, 2010, 121 pages (ISBN: 978-0-691-14185-5) | MR | Zbl
Ergodic theorems for the actions of a free group and a free semigroup, Mat. Zametki, Volume 65 (1999), pp. 779-783 ; translation: Math. Notes 65 (1999), 779–783 (ISSN: 0025-567X) | MR | Zbl | DOI
, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | MR | Zbl | DOI
Généralisation d'un théorème de von Neumann, C. R. Acad. Sci. Paris Sér., Volume 268 (1969), pp. 1020-1023 | MR | Zbl
Borel chromatic numbers, Adv. Math., Volume 141 (1999), pp. 1-44 (ISSN: 0001-8708) | MR | Zbl | DOI
The classification of nonsingular actions, revisited, Ergodic Theory Dynam. Systems, Volume 11 (1991), pp. 333-348 (ISSN: 0143-3857) | MR | Zbl | DOI
Pointwise theorems for amenable groups, Invent. Math., Volume 146 (2001), pp. 259-295 (ISSN: 0020-9910) | MR | Zbl | DOI
, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 871-982 | DOI | MR | Zbl
Harmonic analysis and pointwise ergodic theorems for noncommuting transformations, J. Amer. Math. Soc., Volume 7 (1994), pp. 875-902 (ISSN: 0894-0347) | MR | Zbl | DOI
A generalization of Birkhoff's pointwise ergodic theorem, Acta Math., Volume 173 (1994), pp. 135-154 (ISSN: 0001-5962) | MR | Zbl | DOI
Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., Volume 48 (1987), pp. 1-141 (ISSN: 0021-7670) | MR | Zbl | DOI
Ergodic theorems for actions of hyperbolic groups, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 1749-1757 (ISSN: 0002-9939) | MR | Zbl | DOI
Ergodic theorems for general dynamical systems, Dokl. Akad. Nauk SSSR, Volume 176 (1967), pp. 790-793 ; translation: Soviet Math. Dokl. 8 (1967), 1213–1216 (ISSN: 0002-3264) | MR | Zbl
Volume of spheres in doubling metric measured spaces and in groups of polynomial growth, Bull. Soc. Math. France, Volume 135 (2007), pp. 47-64 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI
Gromov hyperbolic spaces, Expo. Math., Volume 23 (2005), pp. 187-231 (ISSN: 0723-0869) | MR | Zbl | DOI
Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA, Volume 18 (1932), pp. 70-82 | Zbl | DOI | JFM
, Topics in dynamics and ergodic theory (London Math. Soc. Lecture Note Ser.), Volume 310, Cambridge Univ. Press, Cambridge, 2003, pp. 226-262 | MR | Zbl | DOI
Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, Volume 27 (1978), pp. 350-372 | MR | Zbl | DOI
Cité par Sources :