Von Neumann and Birkhoff ergodic theorems for negatively curved groups
[Théorèmes ergodiques de von Neumann et de Birkhoff sur les groupes à courbure négative]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1113-1147.

Voir la notice de l'article provenant de la source Numdam

We prove maximal inequalities for concentric ball and spherical shell averages on a general Gromov hyperbolic group, in arbitrary probability preserving actions of the group. Under an additional condition, satisfied for example by all groups acting isometrically and properly discontinuously on CAT(-1) spaces, we prove a pointwise ergodic theorem with respect to a sequence of probability measures supported on concentric spherical shells.

Pour tout groupe hyperbolique au sens de Gromov et pour toute action, préservant la mesure, sur un espace de probabilités, nous démontrons une inégalité maximale pour les moyennes sur des boules concentriques ou sur des anneaux sphériques concentriques de même épaisseur. Sous une hypothèse supplémentaire, valable par exemple pour les actions isométriques et proprement discontinues sur des espaces CAT(-1), nous démontrons de plus un théorème ergodique ponctuel pour une suite de mesures de probabilités à support dans des anneaux sphériques concentriques.

DOI : 10.24033/asens.2267
Classification : 28D15, 37A20, 20F67, 60J50.
Keywords: Negatively curved group, ergodic theorem, maximal inequality, Patterson-Sullivan measure, measurable equivalence relations, Poisson boundary.
Mots-clés : Groupe à courbure négative, action de groupe, théorème ergodique, inégalité maximale, mesure de Patterson-Sullivan, relation d'équivalence mesurable, bord de Poisson.
@article{ASENS_2015__48_5_1113_0,
     author = {Bowen, Lewis and Nevo, Amos},
     title = {Von {Neumann} and {Birkhoff} ergodic theorems for negatively curved groups},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1113--1147},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {5},
     year = {2015},
     doi = {10.24033/asens.2267},
     mrnumber = {3429477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2267/}
}
TY  - JOUR
AU  - Bowen, Lewis
AU  - Nevo, Amos
TI  - Von Neumann and Birkhoff ergodic theorems for negatively curved groups
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1113
EP  - 1147
VL  - 48
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2267/
DO  - 10.24033/asens.2267
LA  - en
ID  - ASENS_2015__48_5_1113_0
ER  - 
%0 Journal Article
%A Bowen, Lewis
%A Nevo, Amos
%T Von Neumann and Birkhoff ergodic theorems for negatively curved groups
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1113-1147
%V 48
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2267/
%R 10.24033/asens.2267
%G en
%F ASENS_2015__48_5_1113_0
Bowen, Lewis; Nevo, Amos. Von Neumann and Birkhoff ergodic theorems for negatively curved groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1113-1147. doi : 10.24033/asens.2267. http://geodesic.mathdoc.fr/articles/10.24033/asens.2267/

Anantharaman, C.; Anker, J.-P.; Babillot, M.; Bonami, A.; Demange, B.; Grellier, S.; Havard, F.; Jaming, P.; Lesigne, E.; Maheux, P.; Otal, J.-P.; Schapira, B.; Schreiber, J.-P., Monographies de L'Enseignement Mathématique, 41, L'Enseignement Mathématique, Geneva, 2010, 270 pages (ISBN: 978-2-940264-08-7) | MR | Zbl

Adams, S. Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups, Topology, Volume 33 (1994), pp. 765-783 (ISSN: 0040-9383) | MR | Zbl | DOI

Arnolʼd, V. I.; Krylov, A. L. Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain, Dokl. Akad. Nauk SSSR, Volume 148 (1963), pp. 9-12 (ISSN: 0002-3264) | MR | Zbl

Aaronson, J.; Lemańczyk, M., Algebraic and topological dynamics (Contemp. Math.), Volume 385, Amer. Math. Soc., Providence, RI, 2005, pp. 77-87 | MR | Zbl | DOI

Ancona, A. Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math., Volume 125 (1987), pp. 495-536 (ISSN: 0003-486X) | MR | Zbl | DOI

Ancona, A., Potential theory—surveys and problems (Prague, 1987) (Lecture Notes in Math.), Volume 1344, Springer, Berlin, 1988, pp. 1-23 | MR | Zbl | DOI

Ancona, A., École d'été de Probabilités de Saint-Flour XVIII—1988 (Lecture Notes in Math.), Volume 1427, Springer, Berlin, 1990, pp. 1-112 | MR | Zbl | DOI

Bogopolʼskiĭ, O. V.; Gerasimov, V. N. Finite subgroups of hyperbolic groups, Algebra i Logika, Volume 34 (1995), pp. 619-622 (ISSN: 0373-9252) | MR | Zbl | DOI

Bridson, M. R.; Haefliger, A., Grund. Math. Wiss., 319, Springer, Berlin, 1999, 643 pages (ISBN: 3-540-64324-9) | MR | Zbl | DOI

Blachère, S.; Haïssinsky, P.; Mathieu, P. Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011), pp. 683-721 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI

Birkhoff, G. D. Proof of the ergodic theorem, Proc. Nat. Acad. Sci. USA, Volume 17 (1931), pp. 656-660 | Zbl | DOI

Björklund, M. Central limit theorems for Gromov hyperbolic groups, J. Theoret. Probab., Volume 23 (2010), pp. 871-887 (ISSN: 0894-9840) | MR | Zbl | DOI

Bufetov, A. I.; Klimenko, A. Maximal inequality and ergodic theorems for Markov groups, Tr. Mat. Inst. Steklova, Volume 277 (2012), pp. 33-48 translation: Proc. Steklov Inst. Math. 277 (2012), 27–42 (ISBN: 5-7846-0124-5; 978-5-7846-0124-7, ISSN: 0371-9685) | MR | Zbl

Bufetov, A. I.; Khristoforov, M.; Klimenko, A. Cesàro convergence of spherical averages for measure-preserving actions of Markov semigroups and groups, Int. Math. Res. Not., Volume 2012 (2012), pp. 4797-4829 (ISSN: 1073-7928) | MR | Zbl | DOI

Bowen, L.; Nevo, A. Geometric covering arguments and ergodic theorems for free groups, Enseign. Math., Volume 59 (2013), pp. 133-164 (ISSN: 0013-8584) | MR | Zbl | DOI

Bowen, L.; Nevo, A. Pointwise ergodic theorems beyond amenable groups, Ergodic Theory Dynam. Systems, Volume 33 (2013), pp. 777-820 (ISSN: 0143-3857) | MR | Zbl | DOI

Bowen, L.; Nevo, A. Amenable equivalence relations and the construction of ergodic averages for group actions, J. Anal. Math., Volume 126 (2015), pp. 359-388 (ISSN: 0021-7670) | DOI | MR

Bowen, L. Invariant measures on the space of horofunctions of a word hyperbolic group, Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 97-129 (ISSN: 0143-3857) | MR | Zbl | DOI

Bowen, L. The type and stable type of the boundary of a Gromov hyperbolic group, Geom. Dedicata, Volume 172 (2014), pp. 363-386 (ISSN: 0046-5755) | MR | Zbl | DOI

Brady, N. Finite subgroups of hyperbolic groups, Internat. J. Algebra Comput., Volume 10 (2000), pp. 399-405 (ISSN: 0218-1967) | MR | Zbl | DOI

Breuillard, E. Geometry of locally compact groups of polynomial growth and shape of large balls, Groups Geom. Dyn., Volume 8 (2014), pp. 669-732 (ISSN: 1661-7207) | MR | Zbl | DOI

Bufetov, A. I. Operator ergodic theorems for actions of free semigroups and groups, Funktsional. Anal. i Prilozhen., Volume 34 (2000), pp. 1-17 (ISSN: 0374-1990) | MR | Zbl | DOI

Bufetov, A. I. Convergence of spherical averages for actions of free groups, Ann. of Math., Volume 155 (2002), pp. 929-944 (ISSN: 0003-486X) | MR | Zbl | DOI

Calegari, D., Geometry and topology down under (Contemp. Math.), Volume 597, Amer. Math. Soc., Providence, RI, 2013, pp. 15-52 | MR | Zbl | DOI

Calegari, D.; Fujiwara, K. Combable functions, quasimorphisms, and the central limit theorem, Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 1343-1369 (ISSN: 0143-3857) | MR | Zbl | DOI

Connes, A.; Feldman, J.; Weiss, B. An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems, Volume 1 (1981), p. 431-450 (1982) (ISSN: 0143-3857) | MR | Zbl | DOI

Connell, C.; Muchnik, R. Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces, Geom. Funct. Anal., Volume 17 (2007), pp. 707-769 (ISSN: 1016-443X) | MR | Zbl | DOI

Colding, T. H.; Minicozzi, W. P. I. Liouville theorems for harmonic sections and applications, Comm. Pure Appl. Math., Volume 51 (1998), pp. 113-138 (ISSN: 0010-3640) | MR | Zbl | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

Coornaert, M. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math., Volume 159 (1993), pp. 241-270 http://projecteuclid.org/euclid.pjm/1102634263 (ISSN: 0030-8730) | MR | Zbl | DOI

Coornaert, M.; Papadopoulos, A. Horofunctions and symbolic dynamics on Gromov hyperbolic groups, Glasg. Math. J., Volume 43 (2001), pp. 425-456 (ISSN: 0017-0895) | MR | Zbl | DOI

Fujiwara, K.; Nevo, A. Maximal and pointwise ergodic theorems for word-hyperbolic groups, Ergodic Theory Dynam. Systems, Volume 18 (1998), pp. 843-858 (ISSN: 0143-3857) | MR | Zbl | DOI

Flajolet, P.; Sedgewick, R., Cambridge Univ. Press, Cambridge, 2009, 810 pages (ISBN: 978-0-521-89806-5) | MR | Zbl | DOI

Gorodnik, A.; Nevo, A., Annals of Math. Studies, 172, Princeton Univ. Press, Princeton, NJ, 2010, 121 pages (ISBN: 978-0-691-14185-5) | MR | Zbl

Grigorchuk, R. I. Ergodic theorems for the actions of a free group and a free semigroup, Mat. Zametki, Volume 65 (1999), pp. 779-783 ; translation: Math. Notes 65 (1999), 779–783 (ISSN: 0025-567X) | MR | Zbl | DOI

Gromov, M., Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | MR | Zbl | DOI

Guivarcʼh, Y. Généralisation d'un théorème de von Neumann, C. R. Acad. Sci. Paris Sér., Volume 268 (1969), pp. 1020-1023 | MR | Zbl

Kechris, A. S.; Solecki, S.; Todorcevic, S. Borel chromatic numbers, Adv. Math., Volume 141 (1999), pp. 1-44 (ISSN: 0001-8708) | MR | Zbl | DOI

Katznelson, Y.; Weiss, B. The classification of nonsingular actions, revisited, Ergodic Theory Dynam. Systems, Volume 11 (1991), pp. 333-348 (ISSN: 0143-3857) | MR | Zbl | DOI

Lindenstrauss, E. Pointwise theorems for amenable groups, Invent. Math., Volume 146 (2001), pp. 259-295 (ISSN: 0020-9910) | MR | Zbl | DOI

Nevo, A., Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 871-982 | DOI | MR | Zbl

Nevo, A. Harmonic analysis and pointwise ergodic theorems for noncommuting transformations, J. Amer. Math. Soc., Volume 7 (1994), pp. 875-902 (ISSN: 0894-0347) | MR | Zbl | DOI

Nevo, A.; Stein, E. M. A generalization of Birkhoff's pointwise ergodic theorem, Acta Math., Volume 173 (1994), pp. 135-154 (ISSN: 0001-5962) | MR | Zbl | DOI

Ornstein, D. S.; Weiss, B. Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., Volume 48 (1987), pp. 1-141 (ISSN: 0021-7670) | MR | Zbl | DOI

Pollicott, M.; Sharp, R. Ergodic theorems for actions of hyperbolic groups, Proc. Amer. Math. Soc., Volume 141 (2013), pp. 1749-1757 (ISSN: 0002-9939) | MR | Zbl | DOI

Tempelʼman, A. A. Ergodic theorems for general dynamical systems, Dokl. Akad. Nauk SSSR, Volume 176 (1967), pp. 790-793 ; translation: Soviet Math. Dokl. 8 (1967), 1213–1216 (ISSN: 0002-3264) | MR | Zbl

Tessera, R. Volume of spheres in doubling metric measured spaces and in groups of polynomial growth, Bull. Soc. Math. France, Volume 135 (2007), pp. 47-64 (ISSN: 0037-9484) | MR | Zbl | mathdoc-id | DOI

Väisälä, J. Gromov hyperbolic spaces, Expo. Math., Volume 23 (2005), pp. 187-231 (ISSN: 0723-0869) | MR | Zbl | DOI

von Neumann, J. Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA, Volume 18 (1932), pp. 70-82 | Zbl | DOI | JFM

Weiss, B., Topics in dynamics and ergodic theory (London Math. Soc. Lecture Note Ser.), Volume 310, Cambridge Univ. Press, Cambridge, 2003, pp. 226-262 | MR | Zbl | DOI

Zimmer, R. J. Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, Volume 27 (1978), pp. 350-372 | MR | Zbl | DOI

Cité par Sources :