A homological study of Green polynomials*
[Une étude homologique des polynômes de Green]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1035-1074.

Voir la notice de l'article provenant de la source Numdam

We interpret the orthogonality relation of Kostka polynomials arising from complex reflection groups ([51, 52] and [35]) in terms of homological algebra. This leads us to the notion of Kostka system, which can be seen as a categorical counterpart of Kostka polynomials. Then, we show that every generalized Springer correspondence ([34]) in a good characteristic gives rise to a Kostka system. This enables us to see the top-term generation property of the (twisted) homology of generalized Springer fibers, and the transition formula of Kostka polynomials between two generalized Springer correspondences of type 𝖡𝖢. The latter provides an inductive algorithm to compute Kostka polynomials by upgrading [16] §3 to its graded version. In the appendices, we present purely algebraic proofs that Kostka systems exist for type 𝖠 and asymptotic type 𝖡𝖢 cases, and therefore one can skip geometric sections §3–5 to see the key ideas and basic examples/techniques.

La relation d'orthogonalité des polynômes de Kostka émanant des groupes de réflexions complexes ([51, 52] et [35]) est interprétée en termes d'algèbre homologique. Ceci nous conduit à la notion de système Kostka, qui peut être considérée comme une contrepartie catégorique des polynômes de Kostka. Puis, nous démontrons que chaque correspondance de Springer généralisée ([34]) dans une bonne caractéristique engendre un système de Kostka. Nous pouvons ainsi observer la propriété de génération du premier terme de l'homologie (tordue) des fibres de Springer généralisées, ainsi que la formule de transition de polynômes de Kostka entre deux correspondances de Springer généralisées de type 𝖡𝖢. Cette dernière fournit un algorithme inductif de calcul des polynômes de Kostka par la mise à niveau de [16] §3 à sa version graduée. Dans les annexes, nous apportons les preuves algébriques que les systèmes de Kostka existent pour les cas de type 𝖠 et de type 𝖡𝖢 asymptotique. Aussi, il est possible d'omettre de lire les sections géométriques 3 à 5 et pour entrevoir les idées-clés et parcourir des exemples/techniques de base.

Publié le :
DOI : 10.24033/asens.2265
Classification : 20G99, 33D52.
Keywords: Generalized Springer correspondences, Kostka polynomials, the Lusztig-Shoji algorithm, $\mathrm {Ext}$-orthogonal collections, Kostka systems.
Mots-clés : Correspondances de Springer généralisées, polynômes de Kostka, l'algorithme Lusztig-Shoji, ensembles $\mathrm {Ext}$-orthogonales, systèmes de Kostka.
@article{ASENS_2015__48_5_1035_0,
     author = {Kato, Syu},
     title = {A homological study  of {Green} polynomials*},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1035--1074},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {5},
     year = {2015},
     doi = {10.24033/asens.2265},
     mrnumber = {3429475},
     zbl = {1367.20038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2265/}
}
TY  - JOUR
AU  - Kato, Syu
TI  - A homological study  of Green polynomials*
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 1035
EP  - 1074
VL  - 48
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2265/
DO  - 10.24033/asens.2265
LA  - en
ID  - ASENS_2015__48_5_1035_0
ER  - 
%0 Journal Article
%A Kato, Syu
%T A homological study  of Green polynomials*
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 1035-1074
%V 48
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2265/
%R 10.24033/asens.2265
%G en
%F ASENS_2015__48_5_1035_0
Kato, Syu. A homological study  of Green polynomials*. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1035-1074. doi : 10.24033/asens.2265. http://geodesic.mathdoc.fr/articles/10.24033/asens.2265/

Achar, P. N. An implementation of the generalized Lusztig-Shoji algorithm, GAP package (2008) ( https://www.math.lsu.edu/~pramod/resources.html )

Achar, P. N. Springer theory for complex reflection groups, RIMS Kôkyûroku, Volume 1647 (2009), pp. 97-112

Achar, P. N. Green functions via hyperbolic localization, Doc. Math., Volume 16 (2011), pp. 869-884 (ISSN: 1431-0635) | MR | Zbl | DOI

Arthur, J. On elliptic tempered characters, Acta Math., Volume 171 (1993), pp. 73-138 (ISSN: 0001-5962) | MR | Zbl | DOI

Beĭlinson, A. A.; Bernstein, J.; Deligne, P., Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, Paris, 1982 | MR | Zbl

Bezrukavnikov, R. Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math., Volume 170 (2009), pp. 185-206 (ISSN: 0021-2172) | MR | Zbl | DOI

Bernstein, J.; Lunts, V., Lecture Notes in Math., 1578, Springer, Berlin, 1994, 139 pages (ISBN: 3-540-58071-9) | MR | Zbl

Bezrukavnikov, R.; Mirković, I. Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution, Ann. of Math., Volume 178 (2013), pp. 835-919 (ISSN: 0003-486X) | MR | Zbl | DOI

Borho, W.; MacPherson, R. Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math., Volume 292 (1981), pp. 707-710 (ISSN: 0151-0509) | MR | Zbl

Broué, M.; Malle, G.; Michel, J. Towards spetses. I, Transform. Groups, Volume 4 (1999), pp. 157-218 (ISSN: 1083-4362) | MR | Zbl | DOI

Bezrukavnikov, R.; Mirković, I.; Rumynin, D. Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math., Volume 167 (2008), pp. 945-991 (ISSN: 0003-486X) | MR | Zbl | DOI

Beynon, W. M.; Spaltenstein, N. Green functions of finite Chevalley groups of type En (n=6,7,8) , J. Algebra, Volume 88 (1984), pp. 584-614 (ISSN: 0021-8693) | MR | Zbl | DOI

Carter, R. W., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985, 544 pages (ISBN: 0-471-90554-2) | MR | Zbl

Chriss, N.; Ginzburg, V., Birkhäuser, 1997, 495 pages (ISBN: 0-8176-3792-3) | MR

Ciubotaru, D. M.; Kato, S. Tempered modules in exotic Deligne-Langlands correspondence, Adv. Math., Volume 226 (2011), pp. 1538-1590 (ISSN: 0001-8708) | MR | Zbl | DOI

Ciubotaru, D. M.; Kato, M.; Kato, S. On characters and formal degrees of discrete series of affine Hecke algebras of classical types, Invent. Math., Volume 187 (2012), pp. 589-635 (ISSN: 0020-9910) | MR | Zbl | DOI

Collingwood, D. H.; McGovern, W. M., Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993, 186 pages (ISBN: 0-534-18834-6) | MR | Zbl

Ciubotaru, D. M.; Trapa, P. E. Characters of Springer representations on elliptic conjugacy classes, Duke Math. J., Volume 162 (2013), pp. 201-223 (ISSN: 0012-7094) | MR | Zbl | DOI

De Concini, C.; Procesi, C. Symmetric functions, conjugacy classes and the flag variety, Invent. Math., Volume 64 (1981), pp. 203-219 (ISSN: 0020-9910) | MR | Zbl | DOI

Deligne, P.; Lusztig, G. Representations of reductive groups over finite fields, Ann. of Math., Volume 103 (1976), pp. 103-161 (ISSN: 0003-486X) | MR | Zbl | DOI

Evens, S.; Mirković, I. Fourier transform and the Iwahori-Matsumoto involution, Duke Math. J., Volume 86 (1997), pp. 435-464 (ISSN: 0012-7094) | MR | Zbl | DOI

The GAP Group, GAP – Groups, Algorithms, and Programming, v. 4.4.12 (2008) ( http://www.gap-system.org )

Ginzburg, V. Deligne-Langlands conjecture and representations of affine Hecke algebras (1985) (preprint)

Ginzburg, V. Geometrical aspects of representation theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI (1987), pp. 840-848 | MR | Zbl

Goresky, M.; MacPherson, R. On the spectrum of the equivariant cohomology ring, Canad. J. Math., Volume 62 (2010), pp. 262-283 (ISSN: 0008-414X) | MR | Zbl | DOI

Geck, M.; Malle, G. On special pieces in the unipotent variety, Experiment. Math., Volume 8 (1999), pp. 281-290 http://projecteuclid.org/euclid.em/1047262408 (ISSN: 1058-6458) | MR | Zbl | DOI

Garsia, A. M.; Procesi, C. On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math., Volume 94 (1992), pp. 82-138 (ISSN: 0001-8708) | MR | Zbl | DOI

Green, J. A. The characters of the finite general linear groups, Trans. Amer. Math. Soc., Volume 80 (1955), pp. 402-447 (ISSN: 0002-9947) | MR | Zbl | DOI

Heiermann, V. Opérateurs d'entrelacement et algèbres de Hecke avec paramètres d'un groupe réductif p-adique: le cas des groupes classiques, Selecta Math. (N.S.), Volume 17 (2011), pp. 713-756 (ISSN: 1022-1824) | MR | Zbl | DOI

Kato, S. An algebraic study of extension algebras (preprint arXiv:1207.4640 ) | MR

Kato, S. An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J., Volume 148 (2009), pp. 305-371 (ISSN: 0012-7094) | MR | Zbl | DOI

Kumar, S.; Procesi, C. An algebro-geometric realization of equivariant cohomology of some Springer fibers, J. Algebra, Volume 368 (2012), pp. 70-74 (ISSN: 0021-8693) | MR | Zbl | DOI

Letellier, E., Lecture Notes in Math., 1859, Springer, Berlin, 2005, 165 pages (ISBN: 3-540-24020-9) | MR | Zbl

Lusztig, G.; Spaltenstein, N., Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Adv. Stud. Pure Math.), Volume 6, North-Holland, Amsterdam, 1985, pp. 289-316 | MR | Zbl | DOI

Lusztig, G. Cuspidal local systems and graded Hecke algebras. III, Represent. Theory, Volume 6 (2002), pp. 202-242 (ISSN: 1088-4165) | MR | Zbl | DOI

Lusztig, G. Intersection cohomology complexes on a reductive group, Invent. Math., Volume 75 (1984), pp. 205-272 (ISSN: 0020-9910) | MR | Zbl | DOI

Lusztig, G. Character sheaves. V, Adv. Math., Volume 61 (1986), pp. 103-155 (ISSN: 0001-8708) | MR | Zbl | DOI

Lusztig, G. Cuspidal local systems and graded Hecke algebras. I, Publ. Math. IHÉS, Volume 67 (1988), pp. 145-202 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI

Lusztig, G. Affine Hecke algebras and their graded version, J. Amer. Math. Soc., Volume 2 (1989), pp. 599-635 (ISSN: 0894-0347) | MR | Zbl | DOI

Lusztig, G. Green functions and character sheaves, Ann. of Math., Volume 131 (1990), pp. 355-408 (ISSN: 0003-486X) | MR | Zbl | DOI

Lusztig, G. Classification of unipotent representations of simple p-adic groups, Int. Math. Res. Not., Volume 1995 (1995), pp. 517-589 (ISSN: 1073-7928) | MR | Zbl | DOI

Lusztig, G., Representations of groups (Banff, AB, 1994) (CMS Conf. Proc.), Volume 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217-275 | MR | Zbl

Macdonald, I. G., Oxford Mathematical Monographs, The Clarendon Press, Oxford Univ. Press, New York, 1995, 475 pages (ISBN: 0-19-853489-2) | MR | Zbl

Malle, G. Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra, Volume 177 (1995), pp. 768-826 (ISSN: 0021-8693) | MR | Zbl | DOI

Mirković, I. Character sheaves on reductive Lie algebras, Mosc. Math. J., Volume 4 (2004), p. 897-910, 981 (ISSN: 1609-3321) | MR | Zbl | DOI

McConnell, J. C.; Robson, J. C., Graduate Studies in Math., 30, Amer. Math. Soc., Providence, RI, 2001, 636 pages (ISBN: 0-8218-2169-5) | MR | Zbl | DOI

Opdam, E. M. On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 531-648 (ISSN: 1474-7480) | MR | Zbl | DOI

Opdam, E. M.; Solleveld, M. Discrete series characters for affine Hecke algebras and their formal degrees, Acta Math., Volume 205 (2010), pp. 105-187 (ISSN: 0001-5962) | MR | Zbl | DOI

Ostrik, V. A remark on cuspidal local systems, Adv. Math., Volume 192 (2005), pp. 218-224 (ISSN: 0001-8708) | MR | Zbl | DOI

Reeder, M. Formal degrees and L-packets of unipotent discrete series representations of exceptional p-adic groups, J. reine angew. Math., Volume 520 (2000), pp. 37-93 (ISSN: 0075-4102) | MR | Zbl | DOI

Shoji, T. Green functions associated to complex reflection groups, J. Algebra, Volume 245 (2001), pp. 650-694 (ISSN: 0021-8693) | MR | Zbl | DOI

Shoji, T. Green functions associated to complex reflection groups. II, J. Algebra, Volume 258 (2002), pp. 563-598 (ISSN: 0021-8693) | MR | Zbl | DOI

Shoji, T. Generalized Green functions and unipotent classes for finite reductive groups. I, Nagoya Math. J., Volume 184 (2006), pp. 155-198 http://projecteuclid.org/euclid.nmj/1167159344 (ISSN: 0027-7630) | MR | Zbl

Shoji, T. On the Green polynomials of classical groups, Invent. Math., Volume 74 (1983), pp. 239-267 (ISSN: 0020-9910) | MR | Zbl | DOI

Slooten, K. A combinatorial generalization of the Springer correspondence for classical type (2003) | MR | Zbl

Slooten, K. Induced discrete series representations for Hecke algebras of types Bn aff and Cn aff , Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | MR | Zbl | DOI

Springer, T. A. Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 (ISSN: 0020-9910) | MR | Zbl | DOI

Springer, T. A. A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978), pp. 279-293 (ISSN: 0020-9910) | MR | Zbl | DOI

Stanley, R. P. Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc., Volume 1 (1979), pp. 475-511 (ISSN: 0273-0979) | MR | Zbl | DOI

Tanisaki, T. Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tôhoku Math. J., Volume 34 (1982), pp. 575-585 (ISSN: 0040-8735) | MR | Zbl | DOI

Tokuyama, T. On the decomposition rules of tensor products of the representations of the classical Weyl groups, J. Algebra, Volume 88 (1984), pp. 380-394 (ISSN: 0021-8693) | MR | Zbl | DOI

Tanisaki, T.; Xi, N. Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra, Nagoya Math. J., Volume 182 (2006), pp. 285-311 http://projecteuclid.org/euclid.nmj/1150810010 (ISSN: 0027-7630) | MR | Zbl | DOI

Xi, N. Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra, II, J. Eur. Math. Soc. (JEMS), Volume 13 (2011), pp. 207-217 (ISSN: 1435-9855) | MR | Zbl | DOI

Xue, T. Combinatorics of the Springer correspondence for classical Lie algebras and their duals in characteristic 2, Adv. Math., Volume 230 (2012), pp. 229-262 (ISSN: 0001-8708) | MR | Zbl | DOI

Cité par Sources :