Voir la notice de l'article provenant de la source Numdam
We interpret the orthogonality relation of Kostka polynomials arising from complex reflection groups ([51, 52] and [35]) in terms of homological algebra. This leads us to the notion of Kostka system, which can be seen as a categorical counterpart of Kostka polynomials. Then, we show that every generalized Springer correspondence ([34]) in a good characteristic gives rise to a Kostka system. This enables us to see the top-term generation property of the (twisted) homology of generalized Springer fibers, and the transition formula of Kostka polynomials between two generalized Springer correspondences of type . The latter provides an inductive algorithm to compute Kostka polynomials by upgrading [16] §3 to its graded version. In the appendices, we present purely algebraic proofs that Kostka systems exist for type and asymptotic type cases, and therefore one can skip geometric sections §3–5 to see the key ideas and basic examples/techniques.
La relation d'orthogonalité des polynômes de Kostka émanant des groupes de réflexions complexes ([51, 52] et [35]) est interprétée en termes d'algèbre homologique. Ceci nous conduit à la notion de système Kostka, qui peut être considérée comme une contrepartie catégorique des polynômes de Kostka. Puis, nous démontrons que chaque correspondance de Springer généralisée ([34]) dans une bonne caractéristique engendre un système de Kostka. Nous pouvons ainsi observer la propriété de génération du premier terme de l'homologie (tordue) des fibres de Springer généralisées, ainsi que la formule de transition de polynômes de Kostka entre deux correspondances de Springer généralisées de type . Cette dernière fournit un algorithme inductif de calcul des polynômes de Kostka par la mise à niveau de [16] §3 à sa version graduée. Dans les annexes, nous apportons les preuves algébriques que les systèmes de Kostka existent pour les cas de type et de type asymptotique. Aussi, il est possible d'omettre de lire les sections géométriques 3 à 5 et pour entrevoir les idées-clés et parcourir des exemples/techniques de base.
@article{ASENS_2015__48_5_1035_0, author = {Kato, Syu}, title = {A homological study of {Green} polynomials*}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1035--1074}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {5}, year = {2015}, doi = {10.24033/asens.2265}, mrnumber = {3429475}, zbl = {1367.20038}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2265/} }
TY - JOUR AU - Kato, Syu TI - A homological study of Green polynomials* JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 1035 EP - 1074 VL - 48 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2265/ DO - 10.24033/asens.2265 LA - en ID - ASENS_2015__48_5_1035_0 ER -
%0 Journal Article %A Kato, Syu %T A homological study of Green polynomials* %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 1035-1074 %V 48 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2265/ %R 10.24033/asens.2265 %G en %F ASENS_2015__48_5_1035_0
Kato, Syu. A homological study of Green polynomials*. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 5, pp. 1035-1074. doi : 10.24033/asens.2265. http://geodesic.mathdoc.fr/articles/10.24033/asens.2265/
An implementation of the generalized Lusztig-Shoji algorithm, GAP package (2008) ( https://www.math.lsu.edu/~pramod/resources.html )
Springer theory for complex reflection groups, RIMS Kôkyûroku, Volume 1647 (2009), pp. 97-112
Green functions via hyperbolic localization, Doc. Math., Volume 16 (2011), pp. 869-884 (ISSN: 1431-0635) | MR | Zbl | DOI
On elliptic tempered characters, Acta Math., Volume 171 (1993), pp. 73-138 (ISSN: 0001-5962) | MR | Zbl | DOI
, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Soc. Math. France, Paris, 1982 | MR | Zbl
Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math., Volume 170 (2009), pp. 185-206 (ISSN: 0021-2172) | MR | Zbl | DOI
, Lecture Notes in Math., 1578, Springer, Berlin, 1994, 139 pages (ISBN: 3-540-58071-9) | MR | Zbl
Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution, Ann. of Math., Volume 178 (2013), pp. 835-919 (ISSN: 0003-486X) | MR | Zbl | DOI
Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math., Volume 292 (1981), pp. 707-710 (ISSN: 0151-0509) | MR | Zbl
Towards spetses. I, Transform. Groups, Volume 4 (1999), pp. 157-218 (ISSN: 1083-4362) | MR | Zbl | DOI
Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math., Volume 167 (2008), pp. 945-991 (ISSN: 0003-486X) | MR | Zbl | DOI
Green functions of finite Chevalley groups of type , J. Algebra, Volume 88 (1984), pp. 584-614 (ISSN: 0021-8693) | MR | Zbl | DOI
, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985, 544 pages (ISBN: 0-471-90554-2) | MR | Zbl
, Birkhäuser, 1997, 495 pages (ISBN: 0-8176-3792-3) |Tempered modules in exotic Deligne-Langlands correspondence, Adv. Math., Volume 226 (2011), pp. 1538-1590 (ISSN: 0001-8708) | MR | Zbl | DOI
On characters and formal degrees of discrete series of affine Hecke algebras of classical types, Invent. Math., Volume 187 (2012), pp. 589-635 (ISSN: 0020-9910) | MR | Zbl | DOI
, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993, 186 pages (ISBN: 0-534-18834-6) | MR | Zbl
Characters of Springer representations on elliptic conjugacy classes, Duke Math. J., Volume 162 (2013), pp. 201-223 (ISSN: 0012-7094) | MR | Zbl | DOI
Symmetric functions, conjugacy classes and the flag variety, Invent. Math., Volume 64 (1981), pp. 203-219 (ISSN: 0020-9910) | MR | Zbl | DOI
Representations of reductive groups over finite fields, Ann. of Math., Volume 103 (1976), pp. 103-161 (ISSN: 0003-486X) | MR | Zbl | DOI
Fourier transform and the Iwahori-Matsumoto involution, Duke Math. J., Volume 86 (1997), pp. 435-464 (ISSN: 0012-7094) | MR | Zbl | DOI
The GAP Group, GAP – Groups, Algorithms, and Programming, v. 4.4.12 (2008) ( http://www.gap-system.org )
Deligne-Langlands conjecture and representations of affine Hecke algebras (1985) (preprint)
Geometrical aspects of representation theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI (1987), pp. 840-848 | MR | Zbl
On the spectrum of the equivariant cohomology ring, Canad. J. Math., Volume 62 (2010), pp. 262-283 (ISSN: 0008-414X) | MR | Zbl | DOI
On special pieces in the unipotent variety, Experiment. Math., Volume 8 (1999), pp. 281-290 http://projecteuclid.org/euclid.em/1047262408 (ISSN: 1058-6458) | MR | Zbl | DOI
On certain graded -modules and the -Kostka polynomials, Adv. Math., Volume 94 (1992), pp. 82-138 (ISSN: 0001-8708) | MR | Zbl | DOI
The characters of the finite general linear groups, Trans. Amer. Math. Soc., Volume 80 (1955), pp. 402-447 (ISSN: 0002-9947) | MR | Zbl | DOI
Opérateurs d'entrelacement et algèbres de Hecke avec paramètres d'un groupe réductif -adique: le cas des groupes classiques, Selecta Math. (N.S.), Volume 17 (2011), pp. 713-756 (ISSN: 1022-1824) | MR | Zbl | DOI
An algebraic study of extension algebras (preprint arXiv:1207.4640 ) | MR
An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J., Volume 148 (2009), pp. 305-371 (ISSN: 0012-7094) | MR | Zbl | DOI
An algebro-geometric realization of equivariant cohomology of some Springer fibers, J. Algebra, Volume 368 (2012), pp. 70-74 (ISSN: 0021-8693) | MR | Zbl | DOI
, Lecture Notes in Math., 1859, Springer, Berlin, 2005, 165 pages (ISBN: 3-540-24020-9) | MR | Zbl
, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Adv. Stud. Pure Math.), Volume 6, North-Holland, Amsterdam, 1985, pp. 289-316 | MR | Zbl | DOI
Cuspidal local systems and graded Hecke algebras. III, Represent. Theory, Volume 6 (2002), pp. 202-242 (ISSN: 1088-4165) | MR | Zbl | DOI
Intersection cohomology complexes on a reductive group, Invent. Math., Volume 75 (1984), pp. 205-272 (ISSN: 0020-9910) | MR | Zbl | DOI
Character sheaves. V, Adv. Math., Volume 61 (1986), pp. 103-155 (ISSN: 0001-8708) | MR | Zbl | DOI
Cuspidal local systems and graded Hecke algebras. I, Publ. Math. IHÉS, Volume 67 (1988), pp. 145-202 (ISSN: 0073-8301) | MR | Zbl | mathdoc-id | DOI
Affine Hecke algebras and their graded version, J. Amer. Math. Soc., Volume 2 (1989), pp. 599-635 (ISSN: 0894-0347) | MR | Zbl | DOI
Green functions and character sheaves, Ann. of Math., Volume 131 (1990), pp. 355-408 (ISSN: 0003-486X) | MR | Zbl | DOI
Classification of unipotent representations of simple -adic groups, Int. Math. Res. Not., Volume 1995 (1995), pp. 517-589 (ISSN: 1073-7928) | MR | Zbl | DOI
, Representations of groups (Banff, AB, 1994) (CMS Conf. Proc.), Volume 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217-275 | MR | Zbl
, Oxford Mathematical Monographs, The Clarendon Press, Oxford Univ. Press, New York, 1995, 475 pages (ISBN: 0-19-853489-2) | MR | Zbl
Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra, Volume 177 (1995), pp. 768-826 (ISSN: 0021-8693) | MR | Zbl | DOI
Character sheaves on reductive Lie algebras, Mosc. Math. J., Volume 4 (2004), p. 897-910, 981 (ISSN: 1609-3321) | MR | Zbl | DOI
, Graduate Studies in Math., 30, Amer. Math. Soc., Providence, RI, 2001, 636 pages (ISBN: 0-8218-2169-5) | MR | Zbl | DOI
On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 531-648 (ISSN: 1474-7480) | MR | Zbl | DOI
Discrete series characters for affine Hecke algebras and their formal degrees, Acta Math., Volume 205 (2010), pp. 105-187 (ISSN: 0001-5962) | MR | Zbl | DOI
A remark on cuspidal local systems, Adv. Math., Volume 192 (2005), pp. 218-224 (ISSN: 0001-8708) | MR | Zbl | DOI
Formal degrees and -packets of unipotent discrete series representations of exceptional -adic groups, J. reine angew. Math., Volume 520 (2000), pp. 37-93 (ISSN: 0075-4102) | MR | Zbl | DOI
Green functions associated to complex reflection groups, J. Algebra, Volume 245 (2001), pp. 650-694 (ISSN: 0021-8693) | MR | Zbl | DOI
Green functions associated to complex reflection groups. II, J. Algebra, Volume 258 (2002), pp. 563-598 (ISSN: 0021-8693) | MR | Zbl | DOI
Generalized Green functions and unipotent classes for finite reductive groups. I, Nagoya Math. J., Volume 184 (2006), pp. 155-198 http://projecteuclid.org/euclid.nmj/1167159344 (ISSN: 0027-7630) | MR | Zbl
On the Green polynomials of classical groups, Invent. Math., Volume 74 (1983), pp. 239-267 (ISSN: 0020-9910) | MR | Zbl | DOI
A combinatorial generalization of the Springer correspondence for classical type (2003) | MR | Zbl
Induced discrete series representations for Hecke algebras of types and , Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | MR | Zbl | DOI
Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., Volume 36 (1976), pp. 173-207 (ISSN: 0020-9910) | MR | Zbl | DOI
A construction of representations of Weyl groups, Invent. Math., Volume 44 (1978), pp. 279-293 (ISSN: 0020-9910) | MR | Zbl | DOI
Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc., Volume 1 (1979), pp. 475-511 (ISSN: 0273-0979) | MR | Zbl | DOI
Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tôhoku Math. J., Volume 34 (1982), pp. 575-585 (ISSN: 0040-8735) | MR | Zbl | DOI
On the decomposition rules of tensor products of the representations of the classical Weyl groups, J. Algebra, Volume 88 (1984), pp. 380-394 (ISSN: 0021-8693) | MR | Zbl | DOI
Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra, Nagoya Math. J., Volume 182 (2006), pp. 285-311 http://projecteuclid.org/euclid.nmj/1150810010 (ISSN: 0027-7630) | MR | Zbl | DOI
Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra, II, J. Eur. Math. Soc. (JEMS), Volume 13 (2011), pp. 207-217 (ISSN: 1435-9855) | MR | Zbl | DOI
Combinatorics of the Springer correspondence for classical Lie algebras and their duals in characteristic 2, Adv. Math., Volume 230 (2012), pp. 229-262 (ISSN: 0001-8708) | MR | Zbl | DOI
Cité par Sources :