Particle approximation of Vlasov equations with singular forces: Propagation of chaos
[Approximation particulaire des équations de Vlasov avec noyaux de force singuliers : la propagation du chaos]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 891-940.

Voir la notice de l'article provenant de la source Numdam

We justify the mean field approximation and prove the propagation of chaos for a system of particles interacting with a singular interaction force of the type 1/|x|α, with α<1 in dimension d3. We also provide results for forces with singularity up to α<d-1 but with a large enough cut-off. This last result thus almost includes the case of Coulombian or gravitational interactions, but it also allows for a very small cut-off when the strength of the singularity α is larger but close to one.

Nous montrons la validité de l'approximation par champ moyen et prouvons la propagation du chaos pour un système de particules en interaction par le biais d'une force avec singularité 1/|x|α, avec α<1 en dimension d3. Nous traitons également le cas de forces avec troncature et des singularités pouvant aller jusqu'à α<d-1. Ce dernier résultat permet presque d'atteindre les cas d'interaction coulombiennes ou gravitationnelles et requiert seulement de très petits paramètres de troncature lorsque la singularité est proche de α=1.

Publié le :
DOI : 10.24033/asens.2261
Classification : 35Q82, 35-02, 82C22; 35L65, 35Q85, 35Q70, 82C40.
Keywords: Derivation of kinetic equations, particle methods, Vlasov equation, propagation of chaos and mean field limits.
Mots-clés : Dérivation des modèles cinétiques, méthodes particulaires, équation de Vlasov, propagation du chaos et limites de champ moyen.
@article{ASENS_2015__48_4_891_0,
     author = {Hauray, Maxime and Jabin, Pierre-Emmanuel},
     title = {Particle approximation of {Vlasov} equations with singular forces: {Propagation} of chaos},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {891--940},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {4},
     year = {2015},
     doi = {10.24033/asens.2261},
     mrnumber = {3377068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2261/}
}
TY  - JOUR
AU  - Hauray, Maxime
AU  - Jabin, Pierre-Emmanuel
TI  - Particle approximation of Vlasov equations with singular forces: Propagation of chaos
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 891
EP  - 940
VL  - 48
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://geodesic.mathdoc.fr/articles/10.24033/asens.2261/
DO  - 10.24033/asens.2261
LA  - en
ID  - ASENS_2015__48_4_891_0
ER  - 
%0 Journal Article
%A Hauray, Maxime
%A Jabin, Pierre-Emmanuel
%T Particle approximation of Vlasov equations with singular forces: Propagation of chaos
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 891-940
%V 48
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://geodesic.mathdoc.fr/articles/10.24033/asens.2261/
%R 10.24033/asens.2261
%G en
%F ASENS_2015__48_4_891_0
Hauray, Maxime; Jabin, Pierre-Emmanuel. Particle approximation of Vlasov equations with singular forces: Propagation of chaos. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 891-940. doi : 10.24033/asens.2261. http://geodesic.mathdoc.fr/articles/10.24033/asens.2261/

Aarseth, S. J., Cambridge Univ. Press, 2010

Ambrosio, L., Calculus of variations and nonlinear partial differential equations (Lecture Notes in Math.), Volume 1927, Springer, Berlin, 2008, pp. 1-41 | MR | Zbl | DOI

Arsenʼev, A. A. Existence in the large of a weak solution of Vlasov's system of equations, Ž. Vyčisl. Mat. i Mat. Fiz., Volume 15 (1975), pp. 136-147 (ISSN: 0044-4669) | MR | Zbl

Batt, J. N-particle approximation to the nonlinear Vlasov-Poisson system, Nonlinear Anal. (Proceedings of the Third World Congress of Nonlinear Analysts, Part 3 (Catania, 2000)), Volume 47 (2001), pp. 1445-1456 (ISSN: 0362-546X) | MR | Zbl | DOI

Bolley, F.; Cañizo, J. A.; Carrillo, J. A. Stochastic mean-field limit: non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., Volume 21 (2011), pp. 2179-2210 (ISSN: 0218-2025) | MR | Zbl | DOI

Bolley, F.; Guillin, A.; Villani, C. Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields, Volume 137 (2007), pp. 541-593 (ISSN: 0178-8051) | Zbl | MR | DOI

Braun, W.; Hepp, K. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Comm. Math. Phys., Volume 56 (1977), pp. 101-113 (ISSN: 0010-3616) | MR | Zbl | DOI

Barré, J.; Hauray, M.; Jabin, P.-E. Journal of Statistical Mechanics: Theory and Experiment (preprint arXiv:1004.2177 )

Barré, J.; Jabin, P.-E. Free transport limit for N-particles dynamics with singular and short range potential, J. Stat. Phys., Volume 131 (2008), pp. 1085-1101 (ISSN: 0022-4715) | MR | Zbl | DOI

Birdsall, C.; Langdon, A. (Hilger, A., ed.), Series in plasma physics, 1991

Boissard, E. Problèmes d'interaction discret-continu et distances de Wasserstein (2011) http://thesesups.ups-tlse.fr/1389/

Carrillo, J. A.; Choi, Y.-P.; Hauray, M., Collective Dynamics from Bacteria to Crowds (CISM International Centre for Mechanical Sciences), Volume 553, Springer Vienna, 2014, pp. 1-46 (ISBN: 978-3-7091-1784-2) | MR | DOI

Carlen, E. A.; Carvalho, M. C.; Le Roux, J.; Loss, M.; Villani, C. Entropy and chaos in the Kac model, Kinet. Relat. Models, Volume 3 (2010), pp. 85-122 (ISSN: 1937-5093) | MR | Zbl | DOI

Champion, T.; De Pascale, L.; Juutinen, P. The -Wasserstein distance: local solutions and existence of optimal transport maps, SIAM J. Math. Anal., Volume 40 (2008), pp. 1-20 (ISSN: 0036-1410) | MR | Zbl | DOI

Cullen, M.; Gangbo, W.; Pisante, G. The semigeostrophic equations discretized in reference and dual variables, Arch. Ration. Mech. Anal., Volume 185 (2007), pp. 341-363 (ISSN: 0003-9527) | MR | Zbl | DOI

Caglioti, E.; Lions, P.-L.; Marchioro, C.; Pulvirenti, M. A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys., Volume 143 (1992), pp. 501-525 (ISSN: 0010-3616) | MR | Zbl | DOI

Dehnen, W. A Very Fast and Momentum-conserving Tree Code, The Astrophysical Journal, Volume 536 (2000), p. L39-L42 | DOI

DiPerna, R. J.; Lions, P.-L. Ordinary differential equations, Invent. Math, Volume 98 (1989), pp. 511-547 (ISSN: 0010-3640) | MR | Zbl | DOI

Dobrušin, R. L. Vlasov equations, Funktsional. Anal. i Prilozhen., Volume 13 (1979), p. 48-58, 96 (ISSN: 0374-1990) | MR | Zbl

Dobrić, V.; Yukich, J. E. Asymptotics for transportation cost in high dimensions, J. Theoret. Probab., Volume 8 (1995), pp. 97-118 (ISSN: 0894-9840) | MR | Zbl | DOI

Fournier, N.; Guillin, A. On the rate of convergence in Wasserstein distance of the empirical measure (preprint arXiv:1312.2128 ) | MR

Fournier, N.; Hauray, M.; Mischler, S. Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc. (JEMS), Volume 16 (2014), pp. 1423-1466 (ISSN: 1435-9855) | MR | Zbl | DOI

Gao, F. Moderate deviations and large deviations for kernel density estimators, J. Theoret. Probab., Volume 16 (2003), pp. 401-418 (ISSN: 0894-9840) | MR | Zbl | DOI

Goodman, J.; Hou, T. Y. New stability estimates for the 2-D vortex method, Comm. Pure Appl. Math., Volume 44 (1991), pp. 1015-1031 (ISSN: 0010-3640) | MR | Zbl | DOI

Goodman, J.; Hou, T. Y.; Lowengrub, J. Convergence of the point vortex method for the 2-D Euler equations, Comm. Pure Appl. Math., Volume 43 (1990), pp. 415-430 (ISSN: 0010-3640) | Zbl | MR | DOI

Ganguly, K.; Lee, J. T.; Victory, H. D. J. On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed, SIAM J. Numer. Anal., Volume 28 (1991), pp. 1574-1609 (ISSN: 0036-1429) | MR | Zbl | DOI

Golse, F. On the Dynamics of Large Particle Systems in the Mean Field Limit (preprint arXiv:1301.5494 ) | MR

Gallagher, I.; Saint-Raymond, L.; Texier, B. From Newton to Boltzmann : hard spheres and short-range potentials, 2014 | MR | Zbl | DOI

Ganguly, K.; Victory, H. D. J. On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal., Volume 26 (1989), pp. 249-288 (ISSN: 0036-1429) | MR | Zbl | DOI

Grigoryev, Yu. N.; Vshivkov, V. A.; Fedoruk, M. P., De Gruyter, 2002

Hauray, M. On Liouville transport equation with force field in BV loc , Comm. Partial Differential Equations, Volume 29 (2004), pp. 207-217 (ISSN: 0360-5302) | MR | Zbl | DOI

Hauray, M. Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., Volume 19 (2009), pp. 1357-1384 (ISSN: 0218-2025) | MR | Zbl | DOI

Hauray, M. Mean field limit for the one dimensional Vlasov-Poisson equation (2013) (Séminaire Laurent Schwartz, École polytechnique) | MR

Hauray, M.; Jabin, P.-E. N-particles approximation of the Vlasov equations with singular potential, Arch. Ration. Mech. Anal., Volume 183 (2007), pp. 489-524 (ISSN: 0003-9527) | Zbl | MR | DOI

Hauray, M.; Mischler, S. On Kac's chaos and related problems (2012) (To be published soon.) | Zbl | MR

Horst, E. On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Methods Appl. Sci., Volume 16 (1993), pp. 75-86 (ISSN: 0170-4214) | MR | Zbl | DOI

Kac, M. Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, University of California Press (1956), pp. 171-197 | MR | Zbl

Kiessling, M. K.-H. On the equilibrium statistical mechanics of isothermal classical self-gravitating matter, J. Statist. Phys., Volume 55 (1989), pp. 203-257 (ISSN: 0022-4715) | DOI | MR

Kiessling, M. K.-H. Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., Volume 46 (1993), pp. 27-56 (ISSN: 0010-3640) | MR | Zbl | DOI

Kiessling, M. K.-H.; Spohn, H. A note on the eigenvalue density of random matrices, Comm. Math. Phys., Volume 199 (1999), pp. 683-695 (ISSN: 0010-3616) | MR | Zbl | DOI

Lanford, O. E. I., Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974) (Lecture Notes in Phys.), Volume 38, Springer, 1975, pp. 1-111 | MR | Zbl | DOI

Loeper, G. Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006), pp. 68-79 (ISSN: 0021-7824) | Zbl | MR | DOI

Lions, P.-L.; Perthame, B. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991), pp. 415-430 (ISSN: 0020-9910) | Zbl | MR | DOI

McCann, R. J. Stable rotating binary stars and fluid in a tube, Houston J. Math., Volume 32 (2006), pp. 603-631 (ISSN: 0362-1588) | MR | Zbl

McKean, H. P. J., Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., 1967, pp. 41-57 | MR

Mischler, S.; Mouhot, C. Kac's program in kinetic theory, Invent. Math., Volume 193 (2013), pp. 1-147 (ISSN: 0020-9910) | MR | Zbl | DOI

Marchioro, C.; Pulvirenti, M. On the singularities of the Newtonian two-dimensional N-body problem, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Volume 75 (1983), pp. 106-110 (ISSN: 0392-7881) | MR | Zbl

Messer, J.; Spohn, H. Statistical mechanics of the isothermal Lane-Emden equation, J. Statist. Phys., Volume 29 (1982), pp. 561-578 (ISSN: 0022-4715) | DOI | MR

Neunzert, H.; Wick, J., Mathematical methods of plasmaphysics (Oberwolfach, 1979) (Methoden Verfahren Math. Phys.), Volume 20, Lang, 1980, pp. 271-286 | MR | Zbl

Osada, H., Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), Academic Press, 1987, pp. 303-334 | MR | Zbl

Pfaffelmoser, K. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, Volume 95 (1992), pp. 281-303 (ISSN: 0022-0396) | MR | Zbl | DOI

Rougerie, N.; Serfaty, S. Higher Dimensional Coulomb Gases and Renormalized Energy Functionals (preprint arXiv:1307.2805 ) | MR

Saari, D. G. Improbability of collisions in Newtonian gravitational systems. II, Trans. Amer. Math. Soc., Volume 181 (1973), pp. 351-368 (ISSN: 0002-9947) | MR | Zbl | DOI

Saari, D. G. A global existence theorem for the four-body problem of Newtonian mechanics, J. Differential Equations, Volume 26 (1977), pp. 80-111 (ISSN: 0022-0396) | MR | Zbl | DOI

Schaeffer, J. Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations, Volume 16 (1991), pp. 1313-1335 (ISSN: 0360-5302) | MR | Zbl | DOI

Schochet, S. The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., Volume 49 (1996), pp. 911-965 (ISSN: 0010-3640) | Zbl | MR | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

Spohn, H., Springer Verlag, 1991

Sznitman, A.-S., École d'été de probabilités de Saint-Flour XIX—1989 (Lecture Notes in Math.), Volume 1464, Springer, 1991, pp. 165-251 | MR | Zbl | DOI

Trocheris, M. On the derivation of the one-dimensional Vlasov equation, Transport Theory Statist. Phys., Volume 15 (1986), pp. 597-628 (ISSN: 0041-1450) | MR | Zbl | DOI

Varadarajan, V. S. On the convergence of sample probability distributions, Sankhyā, Volume 19 (1958), pp. 23-26 (ISSN: 0972-7671) | MR | Zbl

Villani, C., Graduate Studies in Math., 58, Amer. Math. Soc., 2003, 370 pages (ISBN: 0-8218-3312-X) | MR | Zbl

Wollman, S. On the approximation of the Vlasov-Poisson system by particle methods, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1369-1398 (ISSN: 0036-1429) | MR | Zbl | DOI

Xia, Z. The existence of noncollision singularities in Newtonian systems, Ann. of Math., Volume 135 (1992), pp. 411-468 (ISSN: 0003-486X) | MR | Zbl | DOI

Cité par Sources :