Voir la notice de l'article provenant de la source Numdam
We justify the mean field approximation and prove the propagation of chaos for a system of particles interacting with a singular interaction force of the type , with in dimension . We also provide results for forces with singularity up to but with a large enough cut-off. This last result thus almost includes the case of Coulombian or gravitational interactions, but it also allows for a very small cut-off when the strength of the singularity is larger but close to one.
Nous montrons la validité de l'approximation par champ moyen et prouvons la propagation du chaos pour un système de particules en interaction par le biais d'une force avec singularité , avec en dimension . Nous traitons également le cas de forces avec troncature et des singularités pouvant aller jusqu'à . Ce dernier résultat permet presque d'atteindre les cas d'interaction coulombiennes ou gravitationnelles et requiert seulement de très petits paramètres de troncature lorsque la singularité est proche de .
@article{ASENS_2015__48_4_891_0, author = {Hauray, Maxime and Jabin, Pierre-Emmanuel}, title = {Particle approximation of {Vlasov} equations with singular forces: {Propagation} of chaos}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {891--940}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {4}, year = {2015}, doi = {10.24033/asens.2261}, mrnumber = {3377068}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2261/} }
TY - JOUR AU - Hauray, Maxime AU - Jabin, Pierre-Emmanuel TI - Particle approximation of Vlasov equations with singular forces: Propagation of chaos JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 891 EP - 940 VL - 48 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2261/ DO - 10.24033/asens.2261 LA - en ID - ASENS_2015__48_4_891_0 ER -
%0 Journal Article %A Hauray, Maxime %A Jabin, Pierre-Emmanuel %T Particle approximation of Vlasov equations with singular forces: Propagation of chaos %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 891-940 %V 48 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2261/ %R 10.24033/asens.2261 %G en %F ASENS_2015__48_4_891_0
Hauray, Maxime; Jabin, Pierre-Emmanuel. Particle approximation of Vlasov equations with singular forces: Propagation of chaos. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 891-940. doi : 10.24033/asens.2261. http://geodesic.mathdoc.fr/articles/10.24033/asens.2261/
, Cambridge Univ. Press, 2010
, Calculus of variations and nonlinear partial differential equations (Lecture Notes in Math.), Volume 1927, Springer, Berlin, 2008, pp. 1-41 | MR | Zbl | DOI
Existence in the large of a weak solution of Vlasov's system of equations, Ž. Vyčisl. Mat. i Mat. Fiz., Volume 15 (1975), pp. 136-147 (ISSN: 0044-4669) | MR | Zbl
-particle approximation to the nonlinear Vlasov-Poisson system, Nonlinear Anal. (Proceedings of the Third World Congress of Nonlinear Analysts, Part 3 (Catania, 2000)), Volume 47 (2001), pp. 1445-1456 (ISSN: 0362-546X) | MR | Zbl | DOI
Stochastic mean-field limit: non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., Volume 21 (2011), pp. 2179-2210 (ISSN: 0218-2025) | MR | Zbl | DOI
Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields, Volume 137 (2007), pp. 541-593 (ISSN: 0178-8051) | Zbl | MR | DOI
The Vlasov dynamics and its fluctuations in the limit of interacting classical particles, Comm. Math. Phys., Volume 56 (1977), pp. 101-113 (ISSN: 0010-3616) | MR | Zbl | DOI
Journal of Statistical Mechanics: Theory and Experiment (preprint arXiv:1004.2177 )
Free transport limit for -particles dynamics with singular and short range potential, J. Stat. Phys., Volume 131 (2008), pp. 1085-1101 (ISSN: 0022-4715) | MR | Zbl | DOI
, Series in plasma physics, 1991
(Hilger, A., ed.)Problèmes d'interaction discret-continu et distances de Wasserstein (2011) http://thesesups.ups-tlse.fr/1389/
, Collective Dynamics from Bacteria to Crowds (CISM International Centre for Mechanical Sciences), Volume 553, Springer Vienna, 2014, pp. 1-46 (ISBN: 978-3-7091-1784-2) | MR | DOI
Entropy and chaos in the Kac model, Kinet. Relat. Models, Volume 3 (2010), pp. 85-122 (ISSN: 1937-5093) | MR | Zbl | DOI
The -Wasserstein distance: local solutions and existence of optimal transport maps, SIAM J. Math. Anal., Volume 40 (2008), pp. 1-20 (ISSN: 0036-1410) | MR | Zbl | DOI
The semigeostrophic equations discretized in reference and dual variables, Arch. Ration. Mech. Anal., Volume 185 (2007), pp. 341-363 (ISSN: 0003-9527) | MR | Zbl | DOI
A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys., Volume 143 (1992), pp. 501-525 (ISSN: 0010-3616) | MR | Zbl | DOI
A Very Fast and Momentum-conserving Tree Code, The Astrophysical Journal, Volume 536 (2000), p. L39-L42 | DOI
Ordinary differential equations, Invent. Math, Volume 98 (1989), pp. 511-547 (ISSN: 0010-3640) | MR | Zbl | DOI
Vlasov equations, Funktsional. Anal. i Prilozhen., Volume 13 (1979), p. 48-58, 96 (ISSN: 0374-1990) | MR | Zbl
Asymptotics for transportation cost in high dimensions, J. Theoret. Probab., Volume 8 (1995), pp. 97-118 (ISSN: 0894-9840) | MR | Zbl | DOI
On the rate of convergence in Wasserstein distance of the empirical measure (preprint arXiv:1312.2128 ) | MR
Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc. (JEMS), Volume 16 (2014), pp. 1423-1466 (ISSN: 1435-9855) | MR | Zbl | DOI
Moderate deviations and large deviations for kernel density estimators, J. Theoret. Probab., Volume 16 (2003), pp. 401-418 (ISSN: 0894-9840) | MR | Zbl | DOI
New stability estimates for the 2-D vortex method, Comm. Pure Appl. Math., Volume 44 (1991), pp. 1015-1031 (ISSN: 0010-3640) | MR | Zbl | DOI
Convergence of the point vortex method for the 2-D Euler equations, Comm. Pure Appl. Math., Volume 43 (1990), pp. 415-430 (ISSN: 0010-3640) | Zbl | MR | DOI
On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed, SIAM J. Numer. Anal., Volume 28 (1991), pp. 1574-1609 (ISSN: 0036-1429) | MR | Zbl | DOI
On the Dynamics of Large Particle Systems in the Mean Field Limit (preprint arXiv:1301.5494 ) | MR
From Newton to Boltzmann : hard spheres and short-range potentials, 2014 | MR | Zbl | DOI
On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal., Volume 26 (1989), pp. 249-288 (ISSN: 0036-1429) | MR | Zbl | DOI
, De Gruyter, 2002
On Liouville transport equation with force field in , Comm. Partial Differential Equations, Volume 29 (2004), pp. 207-217 (ISSN: 0360-5302) | MR | Zbl | DOI
Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., Volume 19 (2009), pp. 1357-1384 (ISSN: 0218-2025) | MR | Zbl | DOI
Mean field limit for the one dimensional Vlasov-Poisson equation (2013) (Séminaire Laurent Schwartz, École polytechnique) | MR
-particles approximation of the Vlasov equations with singular potential, Arch. Ration. Mech. Anal., Volume 183 (2007), pp. 489-524 (ISSN: 0003-9527) | Zbl | MR | DOI
On Kac's chaos and related problems (2012) (To be published soon.) | Zbl | MR
On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Methods Appl. Sci., Volume 16 (1993), pp. 75-86 (ISSN: 0170-4214) | MR | Zbl | DOI
Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, University of California Press (1956), pp. 171-197 | MR | Zbl
On the equilibrium statistical mechanics of isothermal classical self-gravitating matter, J. Statist. Phys., Volume 55 (1989), pp. 203-257 (ISSN: 0022-4715) | DOI | MR
Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., Volume 46 (1993), pp. 27-56 (ISSN: 0010-3640) | MR | Zbl | DOI
A note on the eigenvalue density of random matrices, Comm. Math. Phys., Volume 199 (1999), pp. 683-695 (ISSN: 0010-3616) | MR | Zbl | DOI
, Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974) (Lecture Notes in Phys.), Volume 38, Springer, 1975, pp. 1-111 | MR | Zbl | DOI
Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006), pp. 68-79 (ISSN: 0021-7824) | Zbl | MR | DOI
Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991), pp. 415-430 (ISSN: 0020-9910) | Zbl | MR | DOI
Stable rotating binary stars and fluid in a tube, Houston J. Math., Volume 32 (2006), pp. 603-631 (ISSN: 0362-1588) | MR | Zbl
, Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., 1967, pp. 41-57 | MR
Kac's program in kinetic theory, Invent. Math., Volume 193 (2013), pp. 1-147 (ISSN: 0020-9910) | MR | Zbl | DOI
On the singularities of the Newtonian two-dimensional -body problem, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Volume 75 (1983), pp. 106-110 (ISSN: 0392-7881) | MR | Zbl
Statistical mechanics of the isothermal Lane-Emden equation, J. Statist. Phys., Volume 29 (1982), pp. 561-578 (ISSN: 0022-4715) | DOI | MR
, Mathematical methods of plasmaphysics (Oberwolfach, 1979) (Methoden Verfahren Math. Phys.), Volume 20, Lang, 1980, pp. 271-286 | MR | Zbl
, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), Academic Press, 1987, pp. 303-334 | MR | Zbl
Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, Volume 95 (1992), pp. 281-303 (ISSN: 0022-0396) | MR | Zbl | DOI
Higher Dimensional Coulomb Gases and Renormalized Energy Functionals (preprint arXiv:1307.2805 ) | MR
Improbability of collisions in Newtonian gravitational systems. II, Trans. Amer. Math. Soc., Volume 181 (1973), pp. 351-368 (ISSN: 0002-9947) | MR | Zbl | DOI
A global existence theorem for the four-body problem of Newtonian mechanics, J. Differential Equations, Volume 26 (1977), pp. 80-111 (ISSN: 0022-0396) | MR | Zbl | DOI
Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations, Volume 16 (1991), pp. 1313-1335 (ISSN: 0360-5302) | MR | Zbl | DOI
The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., Volume 49 (1996), pp. 911-965 (ISSN: 0010-3640) | Zbl | MR | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
, Springer Verlag, 1991
, École d'été de probabilités de Saint-Flour XIX—1989 (Lecture Notes in Math.), Volume 1464, Springer, 1991, pp. 165-251 | MR | Zbl | DOI
On the derivation of the one-dimensional Vlasov equation, Transport Theory Statist. Phys., Volume 15 (1986), pp. 597-628 (ISSN: 0041-1450) | MR | Zbl | DOI
On the convergence of sample probability distributions, Sankhyā, Volume 19 (1958), pp. 23-26 (ISSN: 0972-7671) | MR | Zbl
, Graduate Studies in Math., 58, Amer. Math. Soc., 2003, 370 pages (ISBN: 0-8218-3312-X) | MR | Zbl
On the approximation of the Vlasov-Poisson system by particle methods, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1369-1398 (ISSN: 0036-1429) | MR | Zbl | DOI
The existence of noncollision singularities in Newtonian systems, Ann. of Math., Volume 135 (1992), pp. 411-468 (ISSN: 0003-486X) | MR | Zbl | DOI
Cité par Sources :