Voir la notice de l'article provenant de la source Numdam
The landslide flow, introduced in [5], is a smoother analog of the earthquake flow on Teichmüller space which shares some of its key properties. We show here that further properties of earthquakes apply to landslides. The landslide flow is the Hamiltonian flow of a convex function. The smooth grafting map taking values in Teichmüller space, which is to landslides as grafting is to earthquakes, is proper and surjective with respect to either of its variables. The smooth grafting map taking values in the space of complex projective structures is symplectic (up to a multiplicative constant). The composition of two landslides has a fixed point on Teichmüller space. As a consequence we obtain new results on constant Gauss curvature surfaces in 3-dimensional hyperbolic or AdS manifolds. We also show that the landslide flow has a satisfactory extension to the boundary of Teichmüller space.
Le flot des glissements de terrain, introduit dans [5], est un analogue régulier du flot des tremblements de terre sur l'espace de Teichmüller, qui partage certaines de ses principales propriétés. Nous montrons ici que d'autres propriétés des tremblements de terre s'appliquent aux glissements de terrain. Le flot des glissements de terrain est le flot hamiltonien d'une fonction convexe. L'application de greffage régulière , à valeur dans l'espace de Teichmüller, qui est aux glissements de terrain ce que le greffage est aux tremblements de terre, est propre et surjective par rapport à chacune de ses variables. L'application de greffage régulière , à valeur dans l'espace des structures projectives complexes, est symplectique (à un facteur multiplicatif près). La composition de deux glissements de terrain a un point fixe dans l'espace de Teichmüller. En conséquence, nous obtenons des résultats nouveaux sur les surfaces à courbure de Gauss constantes dans des variétés de dimension 3 hyperboliques ou AdS. Nous montrons aussi que le flot des glissements de terrain a une extension satisfaisante au bord de l'espace de Teichmüller.
@article{ASENS_2015__48_4_811_0, author = {Bonsante, Francesco and Mondello, Gabriele and Schlenker, Jean-Marc}, title = {A cyclic extension of the earthquake {flow~II}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {811--859}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {4}, year = {2015}, doi = {10.24033/asens.2259}, mrnumber = {3377066}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.24033/asens.2259/} }
TY - JOUR AU - Bonsante, Francesco AU - Mondello, Gabriele AU - Schlenker, Jean-Marc TI - A cyclic extension of the earthquake flow II JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 811 EP - 859 VL - 48 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://geodesic.mathdoc.fr/articles/10.24033/asens.2259/ DO - 10.24033/asens.2259 LA - en ID - ASENS_2015__48_4_811_0 ER -
%0 Journal Article %A Bonsante, Francesco %A Mondello, Gabriele %A Schlenker, Jean-Marc %T A cyclic extension of the earthquake flow II %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 811-859 %V 48 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://geodesic.mathdoc.fr/articles/10.24033/asens.2259/ %R 10.24033/asens.2259 %G en %F ASENS_2015__48_4_811_0
Bonsante, Francesco; Mondello, Gabriele; Schlenker, Jean-Marc. A cyclic extension of the earthquake flow II. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 811-859. doi : 10.24033/asens.2259. http://geodesic.mathdoc.fr/articles/10.24033/asens.2259/
Notes on: “Lorentz spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45] by G. Mess, Geom. Dedicata, Volume 126 (2007), pp. 47-70 (ISSN: 0046-5755) | DOI | MR
Some remarks on Teichmüller's space of Riemann surfaces, Ann. of Math., Volume 74 (1961), pp. 171-191 (ISSN: 0003-486X) | MR | Zbl | DOI
Canonical Wick rotations in 3-dimensional gravity, Mem. Amer. Math. Soc., Volume 198 (2009) (ISBN: 978-0-8218-4281-2, ISSN: 0065-9266) | MR | Zbl | DOI
Some open questions on anti-de Sitter geometry (preprint arXiv:1205.6103 )
Collisions of particles in locally AdS spacetimes I. Local description and global examples, Comm. Math. Phys., Volume 308 (2011), pp. 147-200 (ISSN: 0010-3616) | MR | Zbl | DOI
Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 511-591 (ISSN: 0373-0956) | MR | Zbl | mathdoc-id | DOI
Holomorphic convexity of Teichmüller spaces, Bull. Amer. Math. Soc., Volume 70 (1964), pp. 761-764 (ISSN: 0002-9904) | MR | Zbl | DOI
A cyclic extension of the earthquake flow I, Geom. Topol., Volume 17 (2013), pp. 157-234 (ISSN: 1465-3060) | MR | Zbl | DOI
Fixed points of compositions of earthquakes, Duke Math. J., Volume 161 (2012), pp. 1011-1054 (ISSN: 0012-7094) | MR | Zbl | DOI
Convergence groups and Seifert fibered 3-manifolds, Invent. Math., Volume 118 (1994), pp. 441-456 (ISSN: 0020-9910) | MR | Zbl | DOI
Prescribing metrics on the boundary of convex cores of globally hyperbolic maximal compact ads 3-manifolds (preprint arXiv:1303.7406 )
Projective structures, grafting and measured laminations, Geom. Topol., Volume 12 (2008), pp. 351-386 (ISSN: 1465-3060) | MR | Zbl | DOI
Deformations of metrics and associated harmonic maps, Proc. Indian Acad. Sci. Math. Sci., Volume 90 (1981), pp. 33-45 (ISSN: 0370-0089) | MR | Zbl | DOI
, Astérisque, 66–67, Soc. Math. France, 1991 | MR | mathdoc-id | Zbl
A new proof that Teichmüller space is a cell, Trans. Amer. Math. Soc., Volume 303 (1987), pp. 257-262 (ISSN: 0002-9947) | MR | Zbl | DOI
Convergence groups are Fuchsian groups, Ann. of Math., Volume 136 (1992), pp. 447-510 (ISSN: 0003-486X) | MR | Zbl | DOI
Measured foliations and the minimal norm property for quadratic differentials, Acta Math., Volume 152 (1984), pp. 57-76 (ISSN: 0001-5962) | MR | Zbl | DOI
Conformal anomaly of submanifold observables in AdS/CFT correspondence (preprint arXiv:hep-th/9901021 ) | MR | Zbl
Quadratic differentials and foliations, Acta Math., Volume 142 (1979), pp. 221-274 (ISSN: 0001-5962) | MR | Zbl | DOI
A characterization of compact convex polyhedra in hyperbolic 3-space, Invent. Math., Volume 111 (1993), pp. 77-111 (ISSN: 0020-9910) | MR | Zbl | DOI
The symplectic nature of the space of projective connections on Riemann surfaces, Math. Ann., Volume 305 (1996), pp. 161-182 (ISSN: 0025-5831) | MR | Zbl | DOI
The Nielsen realization problem, Ann. of Math., Volume 117 (1983), pp. 235-265 (ISSN: 0003-486X) | MR | Zbl | DOI
Lines of minima in Teichmüller space, Duke Math. J., Volume 65 (1992), pp. 187-213 (ISSN: 0012-7094) | MR | Zbl | DOI
Minimal surfaces and particles in 3-manifolds, Geom. Dedicata, Volume 126 (2007), pp. 187-254 (ISSN: 0046-5755) | MR | Zbl | DOI
On the renormalized volume of hyperbolic 3-manifolds, Comm. Math. Phys., Volume 279 (2008), pp. 637-668 (ISSN: 0010-3616) | MR | Zbl | DOI
A symplectic map between hyperbolic and complex Teichmüller theory, Duke Math. J., Volume 150 (2009), pp. 331-356 (ISSN: 0012-7094) | MR | Zbl | DOI
, Handbook of Teichmüller theory. Volume III (IRMA Lect. Math. Theor. Phys.), Volume 17, Eur. Math. Soc., Zürich, 2012, pp. 779-819 | MR | Zbl | DOI
, Aspects of low-dimensional manifolds (Adv. Stud. Pure Math.), Volume 20, Kinokuniya, Tokyo, 1992, pp. 263-299 | MR | Zbl | DOI
Surfaces convexes dans l'espace hyperbolique et -structures, J. London Math. Soc., Volume 45 (1992), pp. 549-565 (ISSN: 0024-6107) | MR | Zbl | DOI
Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc., Volume 11 (1998), pp. 283-320 (ISSN: 0894-0347) | MR | Zbl | DOI
Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 (ISSN: 0046-5755) | MR | Zbl | DOI
The Weil-Petersson symplectic structure at Thurston's boundary, Trans. Amer. Math. Soc., Volume 335 (1993), pp. 891-904 (ISSN: 0002-9947) | MR | Zbl | DOI
On the topology defined by Thurston's asymmetric metric, Math. Proc. Cambridge Philos. Soc., Volume 142 (2007), pp. 487-496 (ISSN: 0305-0041) | MR | Zbl | DOI
The Schläfli formula in Einstein manifolds with boundary, Electron. Res. Announc. Amer. Math. Soc., Volume 5 (1999), pp. 18-23 (ISSN: 1079-6762) | MR | Zbl | DOI
Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup., Volume 11 (1978), pp. 211-228 (ISSN: 0012-9593) | MR | Zbl | mathdoc-id | DOI
The Weil-Petersson and Thurston symplectic forms, Duke Math. J., Volume 108 (2001), pp. 581-597 (ISSN: 0012-7094) | MR | Zbl | DOI
Hyperbolic manifolds with convex boundary, Invent. Math., Volume 163 (2006), pp. 109-169 (ISSN: 0020-9910) | MR | Zbl | DOI
, Complex geometry (Osaka, 1990) (Lecture Notes in Pure and Appl. Math.), Volume 143, Dekker, New York, 1993, pp. 179-200 | MR | Zbl
Surfaces convexes dans des espaces lorentziens à courbure constante, Comm. Anal. Geom., Volume 4 (1996), pp. 285-331 (ISSN: 1019-8385) | MR | Zbl | DOI
, Ergebn. Math. Grenzg., 5, Springer, Berlin, 1984, 184 pages (ISBN: 3-540-13035-7) | MR | Zbl | DOI
The grafting map of Teichmüller space, J. Amer. Math. Soc., Volume 15 (2002), pp. 893-927 (ISSN: 0894-0347) | MR | Zbl | DOI
Minimal stretch maps between hyperbolic surfaces (preprint arXiv:math/9801039 ) | MR
, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) (London Math. Soc. Lecture Note Ser.), Volume 112, Cambridge Univ. Press, Cambridge, 1986, pp. 91-112 | MR | Zbl
On an energy function for the Weil-Petersson metric on Teichmüller space, Manuscripta Math., Volume 59 (1987), pp. 249-260 (ISSN: 0025-2611) | MR | Zbl | DOI
, Geometric analysis and the calculus of variations, Int. Press, Cambridge, MA, 1996, pp. 315-341 | MR | Zbl
Dirichlet's energy on Teichmüller's moduli space and the Nielsen realization problem, Math. Z., Volume 222 (1996), pp. 451-464 (ISSN: 0025-5874) | MR | Zbl | DOI
Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys., Volume 239 (2003), pp. 183-240 (ISSN: 0010-3616) | MR | Zbl | DOI
Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on , Trans. Amer. Math. Soc., Volume 355 (2003), pp. 1857-1867 (ISSN: 0002-9947) | MR | Zbl | DOI
The Weil-Petersson Hessian of length on Teichmüller space, J. Differential Geom., Volume 91 (2012), pp. 129-169 http://projecteuclid.org/euclid.jdg/1343133703 (ISSN: 0022-040X) | MR | Zbl
On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math., Volume 117 (1983), pp. 207-234 (ISSN: 0003-486X) | MR | Zbl | DOI
Geodesic length functions and the Nielsen problem, J. Differential Geom., Volume 25 (1987), pp. 275-296 http://projecteuclid.org/euclid.jdg/1214440853 (ISSN: 0022-040X) | MR | Zbl
The Teichmüller theory of harmonic maps, J. Differential Geom., Volume 29 (1989), pp. 449-479 http://projecteuclid.org/euclid.jdg/1214442885 (ISSN: 0022-040X) | MR | Zbl
Harmonic maps from surfaces to -trees, Math. Z., Volume 218 (1995), pp. 577-593 (ISSN: 0025-5874) | MR | Zbl | DOI
On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces, Mat. Sb. (N.S.), Volume 132 (1987), pp. 304-321 ; English translation: Math. USSR Sb. 60 (1988), 297–313 (ISSN: 0368-8666) | MR | Zbl
Cité par Sources :